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Abstract— We consider an edge optical burst switching (OBS)
node with or without converters, and with no buffering. The OBS
node serves a number of users, each connected to the switch over
a fiber link that supports multiple wavelengths. Each wavelength
is associated with a 3-state Markovian burst arrival process. The
arrival process permits short and long bursts to be modeled. We
model the edge OBS node as a closed non-product-form queueing
network, with multiple heterogeneous classes, and we develop
a suite of approximate decomposition algorithms to analyze it.
Our approximate algorithms have a good accuracy, and they
provide insight into the effect of various system parameters on
the performance of the edge OBS node.

I. INTRODUCTION

Optical burst switching (OBS) is a WDM-based technology
positioned between wavelength routing (i.e., circuit switching)
and optical packet switching. The unit of transmission is
a burst whose length in time is arbitrary. The transmission
of each burst is preceded by the transmission of a control
packet, which usually takes place on a separate signaling
channel. Unlike wavelength routing, a source node does not
wait for confirmation that an end-to-end connection has been
set-up. Instead it starts transmitting a data burst after a delay
(referred to as offset), following the transmission of the control
packet. The purpose of the control packet is to inform each
intermediate node of the upcoming data burst so that it can
configure its switch fabric in order to switch the burst to the
appropriate output port. In this work, we assume that an OBS
node has no buffers. In view of this, in case of output port
conflict, it may drop a burst.

The performance of OBS has been studied by several au-
thors. To the best of our knowledge, most performance studies
of OBS networks are based on either simulation or simple
analytical models under the assumption that the burst arrival
process is Poisson. In [1]–[4], an output port of an OBS node
is analyzed assuming Poisson arrivals and no buffering. Under
these assumptions, an output port can be modeled by a finite
number of servers, each representing a wavelength, with no
queue. Then, the probability that a burst destined to this output
port is lost can be obtained from the Erlang B formula. In [5],
[6], an output port is analyzed assuming Poisson arrivals and
buffering. It is then modeled by an M/M/m/K queue, where
m is the number of wavelengths and K − m is the capacity
of the buffer. Wei et al. [7] considered multiple classes of
bursts, each of which is a Poisson arrival process. It is well-
known that the Poisson process is not a good model for wide
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area traffic, and it is unlikely that the burst arrival processes
in future optical networks will be accurately characterized
by the Poisson model. Therefore, more sophisticated models
are required in order to advance our understanding of the
performance and the potential of OBS networks.

In this paper, we develop for the first time a queueing net-
work model of an edge OBS node with burst arrival processes
described by more general Markov processes. The edge OBS
node serves a number of users, each connected to the node
by a fiber link which can support multiple wavelengths. Each
wavelength is associated with a burst arrival process described
by a 3-state Markovian model; the parameters of the model
can be selected to capture a wide range of scenarios of the
arrival stream. We consider an OBS edge node both with and
without converters, and we model it as a closed non-product-
form queueing network which we analyze by decomposition.
We develop algorithms for both the single-class case, in which
all users have the same arrival process, and the multi-class
case, whereby each user has a different arrival process. Finally,
we use our algorithms to gain new insight into the performance
of an edge OBS node.

Following this introduction, we describe briefly the opera-
tion of an edge OBS node in Section II. In Section III, we
present the burst arrival process used in the queueing network
model described in this paper. In Section IV, we describe a
queueing network model of the edge OBS node. Sections V
and VI describe an algorithm for analyzing this queueing
network without and with wavelength converters, respectively,
assuming a single-class of customers. In Section VII, we
present a new decomposition method for analyzing a multi-
class generalization of this queueing network. We validate the
accuracy of the approximation algorithm in Section VIII by
comparing it to simulation results, and we conclude the paper
in Section IX.

II. THE EDGE OBS NODE

The authors participate in the JumpStart project [8],
a joint NCSU/MCNC research effort addressing the design,
specification, performance evaluation, and hardware imple-
mentation of a signaling protocol for OBS networks. The
signaling protocol follows the just-in-time (JIT) approach, and
is based on the work by Wei and McFarland [9]. Part of this
signaling scheme has been reported by Baldine et al. [10].
The signaling protocol has been implemented in FPGA and
it has been deployed in the ATDNet testbed in Washington,
DC. In this paper, we model an edge OBS node employing
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the JumpStart JIT signaling protocol. We now describe
the aspects of the JumpStart signaling protocol that are
necessary for modeling an edge OBS node; for full details,
the interested reader is referred to [10].

We consider an OBS network consisting of OBS nodes
(switches) interconnected by bidirectional fiber links. Each
fiber link between a user and an OBS edge node, or between
two adjacent OBS nodes, can support W +1 wavelengths. Of
these, one wavelength (referred to as control wavelength) is
used to transmit control packets, and the other W wavelengths
(referred to as burst wavelengths) are used to transmit data
bursts. A user is equipped with W + 1 pairs of optical
transceivers, each fixed tuned to one of the W+1 wavelengths.
(Alternatively, a user may be equipped with fewer than W +1
pairs of tunable or fixed transceivers; in this case, however, it
is not possible for a user to access all wavelengths at the same
time.)

Following the JumpStart JIT signaling protocol [10], a
user first sends a setup message to its edge OBS node. The
setup message includes the source and destination addresses,
the wavelength on which the source prefers to transmit the
burst, and other information. We assume that an OBS node
consists of a non-blocking space-division switch fabric, with
no optical buffers. If the edge node can switch the burst on the
specified wavelength, it returns a setup ack message to the
user. The setup ack message contains the offset field that
informs the user how long it should wait before transmitting
its burst. It is possible, however, that a setup message be
refused if the preferred wavelength on the destination output
port is busy, or in the case of full wavelength converters, if
all the wavelengths on the destination output port are busy. In
this case, the edge node returns a reject message. The user
undergoes a random delay, and then re-transmits the setup
message. In our model, we assume that the user continues
to re-transmit the setup message until it receives a setup
ack message, although this assumption can be easily removed.
We have considered the case where a burst is dropped if its
setup message is rejected in [16].

We assume that the node allocates resources within its
switch fabric for a burst at the moment that it decides to accept
the setup message. An alternative approach is to allocate
the necessary resources near the time the edge node expects
the burst to arrive. Assuming that the estimate regarding the
burst arrival time is accurate, the latter approach minimizes
the holding time of the resource for a burst. On the other
hand, it also requires a complex scheduling algorithm, as well
as significant amounts of memory on the signaling board that
processes the OBS signals [10]. Therefore, in JumpStart
we have decided to follow the former approach, which is the
one we model in this work.

Another design issue is related to the time when the node
frees the resources allocated to a burst. One way of resolving
this problem is for the source to indicate the length of the
transmission of the burst in the setup message. Assuming
that the node knows when the burst will start to arrive, it
can then calculate the time when it will free its resources.

reject

setup

setup

setup ack

burst

User Edge Switch

release

burst

offset

delay

Fig. 1. Signaling messages in JumpStart

Alternatively, the user does not communicate to the edge node
the length of its burst, but it simply sends a release message
to the node to indicate the end of its transmission. Upon
receipt of the release message, the node frees the resources
allocated to the burst. The latter solution seems to be easier
to implement, but it gives rise to a larger number of signaling
messages. Our model can take into account either method,
due to the inherent abstractions in the underlying queueing
network.

The sequence of messages exchanged between a user and its
edge node is shown in Figure 1. A user can be seen as being
in one of the following three states: (1) idle, i.e., no bursts
to transmit; (2) busy transmitting a burst; or (3) blocked, i.e.,
undergoing a delay before it re-transmits a setup message.
If a user can simultaneously transmit bursts on different
wavelengths, then it can be in a different state for each burst
wavelength.

III. THE BURST ARRIVAL PROCESS

Each burst wavelength from a user to an OBS edge switch
is associated with a burst arrival process. We use the three-
state Markov process shown in Figure 2 to model arrivals
on a given burst wavelength. The arrival process may be in
one of three states: short burst, long burst, or idle.
If it is in the short burst (respectively, long burst)
state, then the user is in the process of transmitting a short
(respectively, long) burst on this wavelength. If it is in the
idle state, then the user is not transmitting any burst on
this wavelength. The duration of a burst, whether short or
long, and the time spent in the idle state, are assumed to
be exponentially distributed. In this model, we assume that
the source becomes idle after the transmission of each burst.
That is, the source does not transmit bursts back-to-back.
This assumption can be easily removed by modifying the
three-state Markov process in Figure 2 to include transitions
between the short burst and long burst states. Also,
more complicated burst arrival processes can be modeled
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by introducing additional states and appropriate transitions
between them. For instance, instead of using only two burst
lengths (short and long), we may introduce l > 2 different
burst lengths, each associated with a different state of the
Markov process. Non-exponentially distributed burst lengths
can also be accounted for by describing the length of a burst
by a Coxian distribution. The analysis of the queueing network
model that represents an edge OBS node, which we develop
in the following sections, can be extended in a straightforward
manner to these more general burst arrival processes. However,
incorporating more general arrival processes in the model does
introduce additional complexities in the expressions we derive,
therefore, to keep the analysis simple we only consider the
three-state Markov process in Figure 2.

The burst arrival process of Figure 2 is characterized com-
pletely by the following parameters:

• 1/γ, the mean duration of the idle state,
• 1/φs and 1/φl, the mean durations of the short
burst and long burst states, respectively,

• ps, the probability that a burst is a small burst, and

We also let pi denote the probability that a burst from the user
has output port i, i = 1, · · · , P, as its destination, where P is
the number of output ports of the edge OBS node.

Let A, B, and I be random variables denoting the burst
interarrival time, burst duration, and idle time, respectively.
Their relationship is shown in Figure 3. Let LA(s), LB(s),
and LI(s) denote their Laplace transform, respectively. We
have that:

LA(s) = LB(s)LI(s) =

(
ps

φs

φs + s
+ (1 − ps)

φl

φl + s

)
γ

γ + s
(1)

By differentiating LA(s), we obtain the first two moments of
the interarrival time A as follows:

E[A] = ps
1
φs

+ (1 − ps)
1
φl

+
1
γ

(2)

E[A2] = ps

(
1
φ2

s
+

1
γφs

+
1
γ2

)
+ (1 − ps)

(
1
φ2

l

+
1

γφl
+

1
γ2

)

(3)

α1µ µ2

1− α

2-stage Coxian server

Fig. 4. 2-stage Coxian server

Then, the squared coefficient of variation of the inter-arrival
time of successive bursts (short or long), c2(A), is given by:

c2(A) =
E(A2)
E2(A)

− 1 (4)

The squared coefficient of variation c2(A) is a measure of the
burstiness of the arrival process. Unlike the Poisson process
which is smooth (c2(A) = 1), one may introduce any degree of
burstiness into the arrival process of Figure 2 by appropriately
selecting the parameters of the three-state Markov process.

We note that the inter-arrival times of successive bursts are
i.i.d. It is possible to introduce correlation among the inter-
arrival times by allowing bursts to arrive back-to-back, as we
explained above. In this work we do not consider correlated
inter-arrival times.

Since a customer may request either a short or a long service
(burst) with probabilities ps and 1−ps, respectively, the service
time distribution is a two-stage hyperexponential distribution.
It is well-known that this distribution is equivalent to a two-
stage Coxian distribution with c2(B) ≥ 1 (see Figure 4). We
will let µ1 and µ2 denote the service rate of the first and
second stages of the corresponding Coxian server, respectively,
and a denote the probability that, upon completion of the first
service stage, the customer in the Coxian server will proceed
to the second stage. The values of µ1, µ2, and a are uniquely
determined by the values of 1/φs, 1/φl, and ps as follows [11]:

µ1 = φs, µ2 = φl, a =
(1 − ps)(φs − φl)

φs
(5)

The mean E(B) and the squared coefficient of variation c2(B)
of the burst duration can be calculated as:

E(B) =
ps

φs
+

1 − ps

φl
(6)

c2(B) =
2

E2(B)

(
ps

φ2
s

+
1 − ps

φ2
l

)
− 1 (7)

IV. A QUEUEING NETWORK MODEL OF AN EDGE OBS
NODE

In general, an edge OBS node is connected to a number of
users and to a number of other OBS nodes. Consequently, it
receives bursts from users and other OBS nodes. In this work,
we assume that there is no traffic from other OBS nodes to
the edge OBS node, and we only consider the burst traffic
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Fig. 5. Queueing network model of a sub-system of an edge switch without
converters

from the users 1. Let P and N denote the number of input
(or output) ports of an edge node and the number of the users
connected to the edge node, respectively. Note that, P ≥ N .

The traffic on each incoming wavelength from a user to the
edge node is generated by the burst arrival process described in
Section III. Since each user can simultaneously transmit bursts
on all its W burst wavelengths, the user is associated with W
different burst arrival processes. Therefore, an edge node with
N users has a total of NW burst arrival processes. Recall that
a setup message is refused if, at the time it arrives at the
edge node, the output port is busy transmitting another burst.
In this case, the corresponding burst arrival process undergoes
an exponential delay, and then the user re-transmits its setup
message. Thus, at any time, there may be a number of burst
arrival processes undergoing an exponential delay for each
output wavelength.

A. Edge OBS Node Without Converters

Let us first consider an edge OBS node with no converters.
In this case, a burst on an incoming wavelength can only be
switched to the same wavelength on each output port, and user
bursts arriving to the edge switch on different wavelengths
do not interfere with each other. Consequently, the edge
node can be decomposed into W sub-systems, one per burst
wavelength. This decomposition is exact. Each sub-system
w,w = 1, · · · ,W , is a P × P switch with N users, but
each input and output port has a single wavelength, which
corresponds to wavelength w of the original edge switch.
Therefore, each sub-system has N burst arrival processes.

1This is a reasonable assumption for an edge OBS node. Most traffic from
other OBS nodes to the edge node is in the direction from the OBS network
to the users, while in this work we are interested in modeling the performance
of an edge node in the direction from the users to the OBS network.

The queueing network model of a sub-system is shown in
Figure 5; it consists of P + 1 nodes numbered 0, 1, · · · , P .
Node 0 is an infinite server node, and it represents the
burst arrival processes which are in the idle state. Node
i, i = 1, · · · , P , represents the (single) wavelength on output
port i. Each node i consists of a single transmission server
and an infinite server. The customer (if any) occupying the
transmission server represents the burst arrival process whose
burst is being transmitted by output port i. The customers
(if any) in the infinite server represent those burst arrival
processes which are undergoing a delay before their users
re-transmit the corresponding setup messages. The total
number of customers in this closed queueing network model
of a sub-system is equal to N (i.e., it is equal to the total
number of burst arrival processes in the sub-system).

Let us now follow the path of a customer through the
queueing network model in Figure 5. Let us assume that the
customer starts in the idle state, i.e., it is in node 0. The
time it spends in the idle state is exponentially distributed
with mean 1/γ. Upon completion of its service at node 0,
it moves to node i with probability pi; this corresponds to
the transmission of a setup message for a burst with output
port i. If the single transmission server at node i is free,
the customer enters service immediately. The service time is
exponentially distributed with a mean of 1/φs or 1/φl with
probabilities ps or 1−ps, corresponding to the transmission of
short or long burst, respectively. If the transmission server is
busy (i.e., output port contention occurs), the customer enters
the infinite server at node i, where it undergoes an exponential
delay with mean 1/ω; this delay models the delay until the
retransmission of the setup message. Upon completion of
the exponential delay, the customer again tries to seize the
transmission server. If the transmission server is busy, the
customer joins the infinite server again, and it undergoes
another delay, and so on, until it succeeds to get hold of the
transmission server. The customers in the infinite server are
often referred to in the literature as orbiting customers. Note
that it is possible for the transmission server to become idle
while there are one or more customers orbiting. In this case, it
is possible that a new customer arrives from node 0 and starts
service immediately.

In the case where all N customers have the same burst
arrival process, the closed queueing network model can be
seen as consisting of a single class of N customers and P +1
nodes. If each customer has a different burst arrival process,
then we have a multi-class queueing network with P +1 nodes
and N classes, where each class contains exactly one customer.

B. Edge OBS Node With Converters

Let us now consider an edge OBS switch with converters.
In this case, a setup message for output port i of the switch
is accepted as long as at least one wavelength of this output
port is free. Otherwise, the setup message is rejected, and
the user undergoes a delay before retransmitting the message.
Clearly, the above decomposition of an edge switch into sub-
systems per wavelength is no longer possible, since user bursts
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TABLE I

NOTATION USED IN THE ANALYSIS

Parameter Description
N number of users connected to edge switch
P number of input (output) ports of edge switch
W number of burst wavelengths in a fiber
1/γ mean duration of the idle state
1/φs mean duration of the short burst
1/φl mean duration of the long burst
1/ω mean orbiting time of a user
ps prob. that a burst is a short burst
pi prob. that destination output port of burst is i
E(B) mean duration of a burst (short or long)
µ1, µ2, a param. of 2-stage Coxian distr. of burst size

arriving on different wavelengths may interfere with each
other. However, the edge switch as a whole can be modeled
by a closed queueing network very similar to the one shown in
Figure 5. The new queueing network consists of P + 1 nodes
and a total of NW customers (since there are now NW arrival
processes). Node 0 in the new queueing network is identical
to node 0 in the network of Figure 5. Similarly, each node
i, i = 1, · · · , P , in the new queueing network corresponds
to each of the output ports of the edge switch. The main
difference is that each node i, i = 1, · · · , P , consists of an
infinite server and W (rather than one) transmission servers,
each corresponding to one of the W wavelengths of output
port i.

In the following sections, we describe a technique for
solving the queueing network in Figure 5. We note that,
despite the rich literature in queueing network analysis, this
particular queueing network with orbiting customers has not
been analyzed before. The notation used in the analysis is
summarized in Table I. In Section V, we analyze the queueing
network assuming a single class of customers (i.e., all burst
arrival processes are identical) and no wavelength converters.
In Section VI, we analyze the network assuming a single class
of customer and wavelength converters. Finally, the analysis
of the multi-class network is presented in Section VII.

V. ANALYSIS OF THE SINGLE-CLASS QUEUEING

NETWORK WITHOUT CONVERTERS

The queueing network in Figure 5 is a non-product-form
queueing network with Coxian service times. We analyze it
using Marie’s algorithm [12], [13]. The idea in Marie’s method
is to replace each non-BCMP node by a flow equivalent node
with a load-dependent exponential service rate, obtained by
calculating the conditional throughput of the non-BCMP node
in isolation under a load-dependent arrival rate. Therefore, we
need to construct a flow equivalent server for each node i, i =
1, · · · , P . Node 0 is an infinite server (a BCMP node), so we
do not need to construct a flow equivalent node for it. To the
best of our knowledge, Marie’s method has not been applied
to nodes with orbiting customers. Consequently, the derivation
in the next subsection of a flow equivalent server for such a
node is a new contribution.
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a 1µ
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a 1µ
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Fig. 6. State transition rate diagram of node i, i = 1, · · · , P , of the queueing
network of Figure 5

A. The Flow Equivalent Server

Let us consider node i, i = 1, · · · , P , of the queueing
network shown in Figure 5. Let λi(ni) be the arrival rate into
this node when there are a total of ni customers in the node.
We also assume that the service time is a two-stage Coxian
distribution with parameters µ(i,1), µ(i,2), and ai. The state
of node i can be described by the triplet: (nt

i, ki, no
i ), where

nt
i = 0, 1, indicates whether the transmission server is busy or

not, ki = 0, 1, 2, is the Coxian phase of the transmission server
(ki = 0 if and only if nt

i = 0), and no
i = 0, 1, · · · , N −1, gives

the number of orbiting customers occupying the infinite server.
The state transition diagram of node i is shown in Figure 6. In
order to simplify the notation, and since we are only concerned
with the analysis of node i in isolation, we drop the index i
in Figure 6 and throughout the rest of this subsection.

Let p(nt, k, no) be the steady-state probability of the state
(nt, k, no). From Figure 6, we have the following global
balance equations:

p(0, 0, n)(λ(n) + nω) = p(1, 1, n)(1 − a)µ1

+p(1, 2, n)µ2, 0 ≤ n < N (8)

p(1, 1, n − 1)(λ(n) + µ1) = p(0, 0, n)nω + p(1, 1, n − 2)
×λ(n − 1) + p(0, 0, n − 1)λ(n − 1), 0 < n ≤ N (9)

p(1, 2, n − 1)(λ(n) + µ2) = p(1, 1, n − 1)aµ1

+p(1, 2, n − 2)λ(n − 1), 0 < n ≤ N (10)

Let p(n) denote the steady-state probability that there are a
total of n customers in the node. We have that:

p(n) =

{
p(0, 0, 0), n = 0
p(0, 0, n) + p(1, 1, n − 1) + p(1, 2, n − 1), 0 < n < N
p(1, 1, N − 1) + p(1, 2, N − 1), n = N

(11)
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Let υ(n) denote the conditional throughput of the node,
calculated as follows:

υ(n) =

{
0, n = 0
p(1,1,n−1)

p(n) (1 − a)µ1 + p(1,2,n−1)
p(n) µ2, n > 0 (12)

We now have the following two theorems:
Theorem 1: p(n− 1)λ(n− 1) = p(n)υ(n), 0 < n ≤ N .

Proof: By adding equations (8), (9), and (10) together, and
after simplifying the result using equations (11) and (12), we
obtain:

p(0)λ(0) = p(1)υ(1), n = 0 (13)

p(n)λ(n) + p(n)υ(n) = p(n − 1)λ(n − 1)
+p(n + 1)υ(n + 1), 0 < n < N (14)

p(N)υ(N) = p(N − 1)λ(N − 1), n = N(15)

Using equations (13) and (14) recursively, we finally get:

p(n − 1)λ(n − 1) = p(n)υ(n), 0 < n ≤ N (16)

completing the proof of the theorem.

Theorem 2: The conditional throughput υ(n) of the node
is given by the expressions:

υ(0) = 0
υ(1) = µ1ω(λ(1)−aλ(1)+µ2)

(λ(1)+ω)(λ(1)+aµ1+µ2)

υ(n) = nµ1ω(λ(n−1)+(n−1)ω)(λ(n)−aλ(n)+µ2)
Z , 1 < n

(17)

where Z = (λ(n) + nω)((n − 1)ω(µ1 + µ2 + λ(n) − υ(n −
1)) + λ(n − 1)(aµ1 + µ2 + λ(n) − υ(n − 1))).
Proof: By means of expression (12), we can rewrite expres-
sion (8) as follows:

p(0, 0, n)(λ(n) + nω) = p(1, 1, n)(1 − a)µ1 + p(1, 2, n)µ2

= p(n + 1)υ(n + 1)
= p(n)λ(n) (18)

We can also rewrite expression (9) as:

p(1, 1, n − 1)(λ(n) + µ1)
= p(0, 0, n)nω + p(1, 1, n − 2)λ(n − 1) + p(0, 0, n − 1)λ(n − 1)

= p(0, 0, n)nω +
p(1, 1, n − 2) + p(0, 0, n − 1)

p(n − 1)
p(n − 1)λ(n − 1)

= p(0, 0, n)nω +
p(1, 1, n − 2) + p(0, 0, n − 1)

p(n − 1)
p(n)υ(n) (19)

Using expressions (11), (12), (18), and (19), we get the
following group of equations for n > 1:





p(n) = p(0, 0, n) + p(1, 1, n − 1) + p(1, 2, n − 1)
p(n − 1) = p(0, 0, n − 1) + p(1, 1, n − 2) + p(1, 2, n − 2)
υ(n) = p(1,1,n−1)

p(n) (1 − a)µ1 + p(1,2,n−1)
p(n) µ2

υ(n − 1) = p(1,1,n−2)
p(n−1) (1 − a)µ1 + p(1,2,n−2)

p(n−1) µ2

p(0, 0, n)(λ(n) + nω) = p(n)λ(n)
p(0, 0, n − 1)(λ(n − 1) + (n − 1)ω) = p(n − 1)λ(n − 1)
p(1, 1, n − 1)(λ(n) + µ1) = p(0, 0, n)nω

+P (1,1,n−2)+p(0,0,n−1)
p(n−1) p(n)υ(n)

(20)

Now, assuming that p(0, 0, n), p(0, 0, n − 1), p(1, 1, n − 1),
p(1, 1, n − 2), p(1, 2, n − 1), p(1, 2, n − 2), and υ(n) are
unknown variables, we can solve the group of equations (20)
to obtain the expression for υ(n), n > 1, as in (17).

Similarly, we can solve the following group of equations
for p(0, 0, 1), p(1, 1, 0), p(1, 2, 0), and υ(1):






p(1) = p(0, 0, 1) + p(1, 1, 0) + p(1, 2, 0)
υ(1) = p(1,1,0)

p(1) (1 − a)µ1 + p(1,2,0)
p(1) µ2

p(0, 0, 1)(λ(1) + ω) = p(1)λ(1)
p(1, 1, 0)(λ(1) + µ1) = p(0, 0, 1)ω + p(1)υ(1)

(21)

to obtain the expression for υ(1) as in (17). Since υ(0) is
obviously equal to 0, the proof is complete.

We use the conditional throughput υ(n) as the load-
dependent service rate µ(n) of the node in the iterative
algorithm described in the next subsection.

B. The Iterative Algorithm

We use Marie’s algorithm [12] to analyze the queueing
network of Figure 5. The main steps of the algorithm:

• Step 1. Initialize the service rate µi(ni) of flow equivalent
server i, i = 1, · · · , P , to 1/E(B), for ni > 0, and set the
service rate µ0(n0) of flow equivalent server 0 to γn0.

• Step 2. For each node i, i = 1, · · · , P , do:

– Step 2.1. Calculate the arrival rate λi(ni) of node i
by short-circuiting node i in the substitute product-
form closed queueing network, where each node j
has an exponential service time of µj(nj).

– Step 2.2. Calculate the conditional throughput υi(ni)
of node i using Theorem 2.

– Step 2.3. Calculate the steady-state probability
pi(ni) of node i using Theorem 1.

• Step 3. Check the following two convergence conditions.
If both are satisfied, then stop. Otherwise, set µi(ni) to
υi(ni) for all i = 1, · · · , P , and go back to Step 2.

1) The first convergence condition ensures that the sum
of the mean number of customers at all nodes is
equal to the number of customers in the queueing
network:

∣∣∣∣∣
N −

∑P
i=0

∑N
j=0 jpi(j)

N

∣∣∣∣∣ < ε (22)

2) The second convergence condition makes sure that
the conditional throughputs of each node are con-
sistent with the topology of the queueing network:
∣∣∣∣∣
ri − 1

P+1

∑P
j=0 rj

1
P+1

∑P
j=0 rj

∣∣∣∣∣ < ε, i = 0, 1, · · · , P (23)

ri =

{
1
pi

∑N
j=0 pi(j)µi(j), i = 1, · · · , P

∑N
j=0 pi(j)µi(j), i = 0

(24)
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VI. ANALYSIS OF THE SINGLE-CLASS QUEUEING

NETWORK WITH CONVERTERS

As we discussed in Section IV, the only difference between
the queueing network model of an edge switch with wave-
length converters and the queueing network of Figure 5 (which
models a single wavelength sub-system of an edge switch
without wavelength converters) is that, in the former model,
each node i, i = 1, · · · , P , has W transmission servers, while
in the latter model each node i has a single transmission server.
Unfortunately, when each node i has multiple transmission
servers, we cannot obtain a closed-form solution for the con-
ditional throughput of the node. Instead, we solve each node i
numerically using the Gauss-Seidel method [11], to get pi(ni),
the steady probability that node i has ni customers. Then, we
calculate the conditional throughput υi(ni) as follows:

υi(ni) =
pi(ni − 1)λi(ni − 1)

pi(ni)
(25)

Finally, we use the same iterative algorithm described in
Section V-B, to analyze this more general queueing network.

VII. ANALYSIS OF THE MULTI-CLASS QUEUEING

NETWORK WITH OR WITHOUT CONVERTERS

In this section, we present a new decomposition technique
for solving the multi-class version of the queueing network in
Figure 5. The technique is quite general and it can be applied
to a wide class of multi-class queueing networks. The notation
used in the analysis is summarized in Table I.

Consider an edge OBS switch where each customer has
a different burst arrival process. This feature is taken into
account by associating each customer with a different class.
The resulting queueing network is a closed non-product-form
queueing network with multiple classes, each of which has
only a single customer. The number of classes is C = NW ,
where N is the number of users connected to the edge OBS
node and W is the number of wavelengths per fiber. We note
that, for realistic values of N and W , the number of classes
can be very large (i.e., in the order of 100s).

This type of multi-class closed non-product-form has been
studied in the literature [14], [15], mainly by extending Marie’s
algorithm [12]. Neuse and Chandy [14] proposed an algorithm
called the heuristic aggregation method (HAM) to solve such
a queueing network. HAM is a natural extension of Marie’s
method, but it involves two time-consuming computations
which limit its applicability to networks with a very small
number of classes only. First, it requires the numerical analysis
of a node with multi-class load-dependent arrivals and a two-
stage Coxian service time. Second, it requires the computa-
tion of the normalization constant in a multi-class queueing
network. Baynat and Dallery [15], presented an alternative
extension of Marie’s method to multi-class queueing networks.
Specifically, to avoid the computation of the normalization
constant of a multi-class network, they decompose a C-class
network into C single-class networks. The interaction of the
customers in different classes is taken into account in the
analysis of each node in isolation. They also proposed a class

aggregation technique that reduces significantly the complexity
of the analysis of a node. However, the arrival rate to the
aggregate class is calculated by aggregating the arrival rate
to each individual class [15]. This aggregation process takes
time that increases exponentially with the number of classes.
Consequently, while this method is faster than HAM, it cannot
be used in networks with a large number of classes.

Based on these observations, we first show in Section VII-A
how to use HAM to solve networks with only two classes, and
in Section VII-B we present a new method for solving net-
works with more than two classes of customers. Specifically,
we decompose a network with multiple classes of customers
into a set of two-class networks, each of which is solved
using HAM. We also employ a class aggregation technique
to reduce the complexity of the analysis of a node. However,
we use the convolution algorithm to calculate the arrival rate to
the aggregate class and not Baynat and Dallery’s method [15]
since, as we mentioned above, the latter is not scalable.

A. The Two-Class Queueing Network

In this subsection, we assume that there are only two classes
of customers in the queueing network of Figure 5, namely,
class 0 and 1. Also, we assume that each node i, i = 1, · · · , P ,
of the queueing network consists of W ≥ 1 transmission
servers. Therefore, the analysis applies to edge OBS switches
with converters (W > 1) or without (W = 1).

We first construct a flow equivalent node for each node
i, i = 1, · · · , P , of the queueing network in Figure 5. Let
λi0(ni0, ni1) and λi1(ni0, ni1) denote the arrival rate of class 0
and class 1 customers, respectively, to node i when there are
ni0 class 0 customers and ni1 class 1 customers in the node.
We also assume that the service time of class j, j = 0, 1, is a
two-stage Coxian distribution with parameters µ(ij,1), µ(ij,2),
and aij . The state of node i can be described by the vector
(n(t1)

i0 , n
(t2)
i0 , no

i0, n
(t1)
i1 , n

(t2)
i1 , no

i1) where

• n
(t1)
i0 and n

(t1)
i1 are random variables representing the

number of class 0 and class 1 customers, respectively,
being served by the transmission servers in phase one,

• n
(t2)
i0 and n

(t2)
i1 are random variables representing the

number of class 0 and class 1 customers, respectively,
being served in phase two, and

• random variables no
i0 and no

i1 represent the number of
orbiting customers of class 0 and 1, respectively.

Let pi(n
(t1)
i0 , n

(t2)
i0 , no

i0, n
(t1)
i1 , n

(t2)
i1 , no

i1) be the
steady state probability that node i is in state
(n(t1)

i0 , n
(t2)
i0 , no

i0, n
(t1)
i1 , n

(t2)
i1 , no

i1). We use the Gauss-Seidel
method to calculate the steady-state probability numerically.
We then obtain the conditional throughput υi(ni) of node i
as:

υi(ni) =
pi(ni − 1)λi(ni − 1)

pi(ni)
(26)

where pi(ni) and λi(ni) are calculated by:

pi(ni) =
∑

n
(t1)
i0 +n

(t2)
i0 +no

i0+n
(t1)
i1 +n

(t2)
i1 +no

i1=ni

pi(n
(t1)
i0 , n

(t2)
i0 , no

i0, n
(t1)
i1 , n

(t2)
i1 , no

i1) (27)
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λi(ni)=
1

pi(ni)

∑

ni0+ni1=ni

pi(n
(t1)
i0 , n

(t2)
i0 , no

i0, n
(t1)
i1 , n

(t2)
i1 , no

i1)

×[λi0(ni0, ni1) + λi1(ni0, ni1)] (28)

where ni0 = n
(t1)
i0 +n

(t2)
i0 +no

i0, and ni1 = n
(t1)
i1 +n

(t2)
i1 +no

i1.
We use υi(ni) as the load-dependent service rate µi(ni) of
the flow equivalent server of node i.

We solve this two-class product-form network consisting of
the flow equivalent servers using the convolution algorithm
to obtain the arrival rates λi0(ni0, ni1) and λi1(ni0, ni1) to
each node i, i = 1, · · · , P . This process is repeated until
convergence, as dictated by Marie’s algorithm [12].

B. Iterative Algorithm for Analyzing More Than Two Classes

As we observed above, the complexity of HAM increases
exponentially with the number of classes, thus it can only be
applied to networks with a small number of classes. We now
introduce a new method for solving queueing networks with
a large number of classes. The main idea of our algorithm
is to approximate the original multi-class network with a
set of two-class networks, each of which is solved using
HAM. Below, we first describe a mechanism for aggregating
a number of classes into a single class, and subsequently
we describe an iterative algorithm for analyzing multi-class
queueing networks.

1) Class Aggregation: Let C denote the number of classes
in a network, C = NW . For a network with C classes,
we create C two-class networks. For each two-class network
c, c = 1, · · · , C, the first class is class c in the original
network, and the second class is the aggregate class of all
the other classes. To apply our algorithm, we need to specify
the parameters of the service rate of the aggregate class µ

(agg)
i,1 ,

µ
(agg)
i,2 , and α

(agg)
i at node i, i = 0, 1, · · · , P .

Let eic denote the visit ratio of class c at node i. Assuming
that we know the mean response time Tic of class c at node i,
we can calculate the throughput Hc of class c in the network
and the throughput Hic of class c at node i as follows:

Hk =
Nk∑

i Tik × eik
, Hik = Hk × eik (29)

where Nc(= 1 ∀ c) is the number of class c customers.
We employ the class aggregation technique in Baynat and

Dallery’s method [15] to obtain the parameters of the service
time distribution of the aggregate class at node i. Since the
distribution of each class is a two-stage hyper-exponential
distribution, the distribution of the aggregate class is also
a hyper-exponential distribution, but with more than two
stages. The first two moments E(Agg) and E(Agg2) of the
distribution of the aggregate class can be calculated as follows:

E(Agg) =

∑
k �=c HikE(Bk)
∑

k �=c Hik
(30)

E(Agg2) =

∑
k �=c HikE

2(Bk)(1 + c2(Bk))
∑

k �=c Hik
(31)

c2(Agg) =
E(Agg2) − E2(Agg)

E2(Agg)
(32)

where E(Bk) and c2(Bk) are the mean and the squared coeffi-
cient of variation of the burst duration of class k, respectively.
E(Bk) and c2(Bk) can be calculated as in expressions (6)
and (7). We approximate the service time distribution of
the aggregate class as a two-stage Coxian distribution using
moment matching. We use the expressions in [13] to match
the first two moments, as follows:

α
(agg)
i =

1
2c2(Agg)

, µ
(agg)
i1 =

2
E(Agg)

, µ
(agg)
i2 = µ

(agg)
i1 α

(agg)
i

(33)
2) The Iterative Algorithm: As we described in the previous

subsection, if we know the mean response time of each class at
each node in a network with C classes, then we can decompose
the network into C two-class queueing networks. Using HAM,
we can solve each of these C two-class queueing networks,
and then we can re-calculate the mean response time of each
class at each node. We repeat this process until it converges.
The following steps summarize our iterative algorithm.

• Step 1. Initialize the mean response time Tic to 1 for
all i, c, i = 0, 1, · · · , P, c = 1, · · · , C. Initialize the load-
dependent service rate µi(ni) of node i, i = 1, · · · , P , in

each two-class network to
∑

i
Hic∑

i
HicE(Bc)

for ni > 0.

• Step 2. For each i = 0, 1, · · · , P and c = 1, · · · , C, do

– Step 2.1. Calculate the throughput of each class
using expression (29).

– Step 2.2. Aggregate all classes except class c into
one class using expression (33), to obtain the two-
class queueing network c, which consists of class c
and the aggregate class.

– Step 2.3. Solve the two-class product-form queueing
network c using the convolution algorithm to obtain
the arrival rate to node i of both class c and the
aggregate class.

– Step 2.4. Solve node i numerically using the Gauss-
Seidel method to obtain the steady-state probabilities
pi(n

(t1)
i0 , n

(t2)
i0 , no

i0, n
(t1)
i1 , n

(t2)
i1 , no

i1).
– Step 2.5. Calculate the conditional throughput υi(ni)

of node i using expression (26), and use this value
as the load-dependent service rate µi(ni) of the
flow equivalent server of node i in the two-class
network c.

– Step 2.6. Set variable T old
ic to Tic.

– Step 2.7. Calculate the new mean response time Tic

of class c at node i.

• Step 3. Check if the mean response times Tic, i =
0, · · · , P, c = 1, · · · , C, satisfy the following convergence
criterion. If so, then stop. Otherwise, repeat from Step 2.

√∑
i,c(Tic − T old

ic )2
√∑

i,c T 2
ic

< ε (34)

VIII. NUMERICAL RESULTS

We now present results to illustrate how the different
parameters affect the performance of the edge OBS node.
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We also compare the approximate results to results obtained
from simulation. Simulation results are plotted along with 95%
confidence intervals; however, most confidence intervals are
very narrow and are barely visible in the figures.

A. Single-Class Network

A comprehensive set of results for various performance
measures and for a wide range of values of the system
parameters listed in Table I can be found in [16]. Due to
space constraints, we only show results for P = 16 (i.e., a
16× 16 edge switch) with W = 32 wavelengths per fiber and
a hot-spot traffic pattern where 10% of all arriving traffic has
output port 16 as its destination, while the remaining traffic
is uniformly distributed among the other 15 output ports (i.e.,
pi,16 = 0.1 ∀ i, and pij = 0.06 ∀ i, j �= 16). We consider three
performance measures: switch throughput, which is the sum
over all output ports of the port throughput, switch utilization,
i.e., the average across all output ports of the port utilization,
and mean waiting time of a user, that is, the average waiting
time until a user transmits a burst to the switch.

Figures 7-9 plot the three performance measures, respec-
tively, against the number N of users attached to an OBS
switch without converters (note that, as the number of users
increases, the traffic load to the switch also increases accord-
ingly). There are two sets of plots, each corresponding to
a different burst arrival process. For both arrival processes,
the mean burst size is 1, the mean burst interarrival time
is 1.2, and the mean orbiting time is 1. However, the squared
coefficient of variation c2(A) of the burst interarrival times
is 1 for one process, and 100 for the other; the process with
c2(A) = 1 is very smooth, while the one with c2(A) =
100 is extremely bursty. Each set consists of two plots, one
corresponding to simulation results and one corresponding to
results obtained using the approximate analytical model we
developed in Section V.

From the three figures, we observe that as the number of
users increases, the switch throughput, switch utilization, and
mean user waiting time all increase. This behavior is expected,
since the traffic load also increases with the number of users.
We also observe that, for all three performance measures, the
approximate analytical results are very close to the results ob-
tained from simulation. (We have observed a good agreement
between between the analytical and simulation results across
a wide range of system parameters [16]). We emphasize that,
in addition to being accurate, our approximate algorithms are
orders of magnitude faster than simulation: computing one
point for the plots of Figures 7-9 may take hours of simulation
time, while it takes the approximate algorithm only a few
seconds for the same computation.

From Figures 7-9 we also see the dramatic effect that the
burstiness of the arrival process can have on the performance
of the edge OBS node. Specifically, for the smooth arrival
process (c2(A) = 1), the switch throughput and utilization
increase with the number of users, while the mean waiting time
remains remains low. When the arrival process is extremely
bursty (c2(A) = 100), on the other hand, increasing the traffic
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load by increasing the number of users has minimal effect on
switch throughput or utilization, which remain at low levels,
while it severely affects the mean waiting time. This result can
be explained by noting that, when arrivals are bursty, the first
arriving user will be successful in transmitting its traffic, while
subsequent users will find their output wavelength busy and
will become orbiting customers. While this behavior agrees
with intuition, the important point is that using our model,
one can study a broad spectrum of switch behaviors by simply
using different values for some of the parameters. Coupled
with the fact that the approximation algorithms are fast and
accurate, our queueing model can be used for extensive “what
if” analysis that would not be possible otherwise.

Figures 10-12 are similar, but present results for an edge
OBS node with converters. We consider two arrival processes
as before, with the same mean burst size and mean interar-
rival time, and squared coefficient of variation equal to 1 or
100. From the figures, we observe the same good agreement
between analytical and simulation results. However, we also
observe two important differences compared to the results in
Figures 7-9 for a switch with no converters. First, for the
same traffic load, all performance measures are significantly
improved. For instance, when N = 15, the switch throughput
and utilization are 320 and 0.62, respectively (compared to
190 and 0.37, respectively, when there are no converters and
c2(A) = 1), while the mean waiting time drops dramatically
to 0.32. Again, this improvement in performance is expected,
but our queueing models enable us to quantify the benefits
of wavelength conversion. The second important observation
is that, for all three measures, there is little difference in the
performance when the squared coefficient of variation of the
arrival process increases from 1 to 100. This result can be
explained by noting that each output port has W = 32 wave-
lengths, therefore, up to 32 simultaneous burst transmissions
may take place at any given time regardless of the wavelength
at which they arrive. Even when arrivals are extremely bursty,
all transmissions can be accommodated as long as they are no
more than 32. Only when all 32 wavelengths are busy will
any transmission attempts undergo a delay; consequently, the
switch throughput and utilization are high and waiting time
is low. On the other hand, for a switch without converters,
if multiple bursts arrive back-to-back requesting the same
wavelength on the same output port, only the first one will
be transmitted and all the others will have to be delayed.
Therefore, the higher the degree of burstiness of the arrival
process, the larger the degree to which the switch performance
suffers. Overall, the results in Figures 10-12 indicate that, in
addition to their well-known benefits, wavelength converters
may also mitigate the adverse effects of extremely bursty
traffic on switch performance. This observation is important
since, by definition, OBS networks will deal with bursty traffic.

B. Multi-Class Network

We now present results for the edge switch when each
user is associated with a different arrival process. We study
the same 16 × 16 switch with W = 32 wavelengths and
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the same hot-spot traffic pattern as in the last subsection.
Since we are interested in the relative performance of different
users, for simplicity we only show results for a switch without
converters. In this experiment, all users have the same load
30%, the same mean burst size 1, the same ratio 100 of mean
long burst size to mean short burst size, and mean orbiting
time equal to 1. However, different users have different short
burst probabilities ps; specifically, the value of ps of user
i, i = 1, · · · , 16, is equal to 0.05+i×0.05. That is, a user with
a larger index has more short bursts than a user with a smaller
index. For example, user 16 has 85% short bursts, while user 1
has only 10% short bursts. We consider two measures: user
throughput, defined as the number of bursts transmitted by a
user per unit time, and mean user waiting time.

Figures 13 and 14 plot the throughput and the mean
waiting time of each user, respectively. First, we observe a
good agreement between the analytical and simulation results.
We also observe that as the index of a user increases, the
throughput increases and the waiting time decreases. That
is, if two users have the same traffic load, the same mean
burst size, and the same burst size ratio, but different short
burst probabilities, then the user with more short bursts has a
lower waiting time and a higher throughput. Again, our model
and approximate algorithms provide insight into the effect
of the traffic parameters on user performance. For additional
experiments and results for a multi-class OBS node, the reader
is referred to [16].

IX. CONCLUDING REMARKS

We have presented a new queueing network model of an
edge OBS node. The model is quite general, and it permits
us to study the performance of an edge switch under a wide
range of traffic and operational scenarios. We have developed
approximate algorithms, and we have presented numerical
results which demonstrate the accuracy of our approximations.
We are currently working on extensions of the queueing
network models to analyze a network of OBS nodes.
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