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Abstract—1In this paper, we develop, analyze and implement
a congestion control scheme obtained in a noncooperative game
framework where each user’s cost function is composed of a
pricing function, proportional to the queueing delay experienced
by the user, and a fairly general utility function which captures
the user demand for bandwidth. Using a network model based on
fluid approximations and through a realistic modeling of queues,
we establish the existence of a unique equilibrium as well as
its global asymptotic stability for a general network topology.
We also provide sufficient conditions for system stability when
there is a bottleneck link shared by multiple users experiencing
non-negligible communication delays. Based on these theoretical
foundations, we implement a window-based, end-to-end conges-
tion control scheme, and simulate it in ns-2 network simulator
on various network topologies with sizable propagation delays.

Methods Keywords: Control theory, Mathematical program-
ming/optimization, Simulations, Economics.

I. INTRODUCTION

Game theory provides a natural framework for developing
pricing and congestion control mechanisms for the Internet.
Users on the network can be modeled as players in a con-
gestion control game where they choose their strategies or
in this case flow rates. Players are noncooperative in terms
of their demands for network resources, and have no specific
information on other users’ strategies. A user’s demand or
utility for bandwidth is captured in a utility function, and may
not be bounded. To compensate for this, one can devise a
pricing function, proportional to the bandwidth usage of a
user, in order to preserve the network resources and to provide
an incentive for the user to implement end-to-end congestion
control [1]. A useful concept in such a noncooperative con-
gestion control game is that of Nash equilibrium [2] where
each player minimizes his/her own cost (or maximize payoff)
given all other players’ strategies. There is rich literature on
game theoretic analysis of flow control problems utilizing both
cooperative [3] and noncooperative [4], [S], [6] frameworks.
Congestion control schemes utilizing pricing schemes based
on explicit feedback have been proposed by Kelly et al. [7],
[8], and Gibbens et al. [9], and subsequent studies have further
elaborated on this approach following its basic principles [10],
[11], [12].
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Although the game theoretic approach provides a suitable
framework for formulating and studying congestion and flow
control problems in general networks, there are some inherent
restrictions on implementable cost functions in the case of
Internet-style networks. For example, the current structure of
the Internet makes it difficult, if not impossible, for users
to obtain detailed real time information on the state of the
network and on other users. Therefore, users are bound to
use indirect aggregate metrics that are available to them, such
as packet drop rate and variations in the average round trip
time (RTT) of packets in order to infer the current situation
in the network. Packet drops, for example, are currently used
by most widely deployed versions of TCP as an indication of
congestion. In this paper, however, we propose and analyze a
pricing and congestion control scheme based on variations in
the queueing delay a user experiences. A similar approach has
been suggested in a version of the transfer control protocol
(TCP), known as TCP Vegas [13]. Although TCP Vegas
is more efficient than a widely used version of TCP, TCP
Reno [14], the suggested improvements are empirical and
based on experimental studies. Another study, by Mo and
Walrand [12], also makes use of an approach similar to the
one in this paper; however, it is based on fairness and pricing
concepts of Kelly, and employs only a narrow set of utility
functions in describing user demands.

The noncooperative congestion control game introduced in
this paper is characterized by a cost function for each user that
is defined as the difference of pricing and utility functions.
The pricing function is proportional to the queueing delay
experienced by the user, whereas the utility function that
quantifies the user demand for bandwidth belongs to a broad
class of strictly increasing and strictly concave functions.
Through a network model based on fluid approximations, and
a realistic queueing model, we show the existence of a unique
‘Nash’ equilibrium, under the assumption that the effect of
a user’s flow on congestion cost is vanishingly small, which
holds especially if the number of users is large. Furthermore,
we establish the global stability of the equilibrium under a
general network topology. We also investigate stability of the
system in a network with non-negligible propagation delays,
and provide sufficient conditions for stability in the case of a
bottleneck node with multiple users. Based on the theoretical
foundations developed, we design a window-based, end-to-end
congestion control scheme for Internet-style networks, which
is TCP-friendly [15]. This congestion control scheme is then
simulated in Network Simulator 2 (ns-2) over Internet protocol
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(IP) for various network topologies.

The rest of the paper is organized as follows: The underlying
network model and cost function are given in the next section.
In Section III, the existence of a unique equilibrium and global
stability of the system under a general network topology are
established. Section IV generalizes the stability analysis of
Section III to the case with delay, with a single bottleneck
link. In Section V we provide a realistic implementation of
the congestion control scheme for IP networks. Section VI
includes simulation results, and is followed by the concluding
remarks of Section VII.

1I. THE MODEL
A. The Network Model

We consider a general network model based on fluid approx-
imations. Fluid models are widely used in addressing a variety
of network control problems such as congestion control [12],
[5], [16], routing [5], [6], and pricing [7], [3], [17]. The
topology of the network is characterized by a set of nodes N =
{1,...,N} and a set of links £ = {1,..., L}, connecting the
nodes. In this network model, we make the natural assumption
of connectivity, and let M := {1,..., M} denote the set of
active users. Each link [ € £ has a fixed capacity C; > 0,
and an associated buffer size b; > 0. For simplicity, each
user is associated with a (unique) connection. Hence, the ith
(i € M) user corresponds to a unique connection between
the source and destination nodes, s;, de; € N/, and we denote
the corresponding route (path), which is a subset of £, by R;.
The nonnegative flow, x;, sent by the ith user over this path
R; satisfies the bounds 0 < z; < ;.. The upper bound,
2§ maz> ON the ith user’s flow rate may be a user specific
physical limitation, and cannot exceed the minimum capacity
of the links on the route, min;{C; , ! € R;}.

It is possible to define a routing matrix, A, as in [7] that
describes the relation between the set of routes R associated
with the users (connections) and links [ € L :

A= {(1)’
(D

Using the routing matrix A, the capacity constraints of the
links are given by

if source i uses link! 1€ Mand

if source i does not use link! [ €L

Ax<C , 2

where x is the (M x 1) flow rate vector of the users and C is
the (L x 1) link capacity vector. If the aggregate sending rate
of users whose flows pass through link [/ exceeds the capacity,
C}, of the link then the arriving packets are queued (generally
on a first-come first-serve basis) in the buffer, b;, of the link
with bj ;q. being the maximum buffer size. Let the total flow
on link / be given by 7; :=} .., r, Zi- Thus, the buffer level
at link [ evolves in accordance with

. [T — 7, if bi(t) = bimax
bl (t) =4 — Cl; if 0< bl(t) < bl,muw (3)
[:fl — Clrr, if bl(t) =0
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where b;(t) denotes (9b;(t)/dt), []* represents the function
max(.,0), and [.]~ represents the function min(.,0).

B. The Cost (Objective) Function

An important indication of congestion for internet-style
networks is the variation in queueing delay, d, which is defined
as the difference between the actual delay experienced by a
packet, d*, and the fixed propagation delay of the connection,
dP. If the incoming flow rate to a router exceeds its capacity,
packets are queued (generally on a first-come first-serve basis)
in the existing buffer of the router, leading to an increase in
the RTT of packets. Hence, RTT on a congested path is longer
than the base RTT, which is defined as the sum of propagation
and processing delays on the path of a packet. The queueing
delay at the I*" link, d;, is a nonlinear function of the excess
flow on that link, and is given by

[@—c] i) = dimee
di(x,t) = { & (@ — C1), if0 < di(t) < dimaw )
(

T; — Cl)}-i_, lfdl(t) =0

in accordance with the buffer model described in (3), with
di mae being the maximum possible queueing delay. Thus,
the total queueing delay, D;, a user experiences is the
sum of queueing delays on its path, namely D;(x,t) =
ZleRi dl(X, t), i€ M.

Let us define a cost function for each user as the difference
between pricing and utility functions. The pricing function
of the i*" user is linear in x;, and is proportional to the
total queueing delay D;(t) of the user. The utility function
U, (x;) is assumed to be strictly increasing, differentiable, and
strictly concave; it basically describes the user’s demand for
bandwidth. Accordingly, we make use of variations in RTT
to devise a congestion control and pricing scheme. The cost

(objective) function for the i*" user at time ¢ is thus given by

Ji(x,t) = a; D;(x,t) x; — Us(a;) (5)

which s/he wishes to minimize. In accordance with this
objective, we consider a simple dynamic model of the network
game where each user changes her/his flow rate in proportion
with the gradient of her/his cost function with respect to her/his
flow rate, #; = —0J;(x)/0x;. Thus, the update algorithm for
the t"

user is:
dU; (z; - .
|: da(vjn L o Di(xa t):| ) ifz; = Ti max
. dU; (x5 .
dp={ WD o Di(xt), 0 <2 < Timar (©)

[_d%iih) — Q4 Di(X, t):| i s if xTr; = 0
where the effect of the i user on the delay, D;(x,t), s/he
experiences is ignored. This assumption can be justified for
networks with a large number of users, where the effect of
each user is vanishingly small. Furthermore, from a practical
point of view, it is extremely difficult if not impossible for a
user to estimate her/his own effect on queueing delay.
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III. STABILITY ANALYSIS

In this section, we analyze the stability of the system
described by (4) and (6). First, we investigate the simple case
of a single link with a single user in order to gain further
insight into the system. ! We then generalize the analysis to a
single link with multiple users. Finally, we establish stability
for a general network topology with multiple links and users.

A. Stability for a Single Link with a Single User

For a single user on a single link, the equations describing
the dynamics of the system consist of the user algorithm,
which is a simplified version of (6), and queueing delay
equation for a single user derived from (4). For the time being
we ignore the effects of boundaries on the system:

x(t) = d(il;m) — ad(x,t) o
dt) = % -1

where d is the queueing delay, z is the user flow rate, and C
is the link capacity.

The system (7) has a unique equilibrium point (z*,d*)
given by z* = C and d* = (1/«) dU(z*)/dz. We implicitly
assume that « is chosen sufficiently high such that the equi-
librium point is feasible, d* < d,,q4,. Defining the queueing
delay and flow rate around the equilibrium point, z := x — x*
and d := d — d*, we obtain the following equivalent system
around the equilibrium:

i (®)

where the function g(Z) is defined as

_ dU(z) dU(z”)

9(7) - dx dx
Note that
>0 ,ifz<O0
g(Z) ¢ <0 ,ifZ>0 )
=0 ,ifz=0,

due to the fact that U(z) is strictly concave in x, and hence,
(dU(x)/dx) is strictly decreasing.

The system (8) can be viewed as a generalized pendulum
equation with g(Z) as the friction term [18]. Let us define a
set Q as

Q={(&,d) eR?: —2* < & < Zppgp — &*

- 1
and — d* <d < dpas — d*}, (19)

where d,q. and x4, are finite upper-bounds on d and x
respectively. ~
Next define an energy-like Lyapunov function on the set 2

1 -

w@@za@ﬁ+m@? (11)

! Admittedly, in this case the assumption of an individual user not affecting
the delay on a link is violated, but still this exercise is useful for the subsequent
analysis dealing with the multiple users case.
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Notice that V(,d) is positive definite on 2. The derivative
of V' along the system trajectories is given by

ViEd)= 2g(@) <0,

where the inequality follows from (9). Thus, V(Z,d) is neg-
ative semi-definite. Let S := {(%,d) € Q : V(Z,d) = 0}. It
follows from (9) that S = {(%,d) € Q : # = 0}. Hence, for
any trajectory of the system that belongs to .S, we have = = 0.
It follows then directly from (8) that

P=0=>1=0=g(F)=0=>d=0.

Therefore, the only solution that can stay identically in .S is
the zero solution, which corresponds to the unique equilibrium
of the original system (7). We next consider the effect of
boundaries as described by (4) and (6) with d=d,and 7 = x;.
First, we analyze the case of the unique equilibrium being an
inner point. Assume that the trajectory of the system hits the
boundary d = dar = dmaz — d* > 0. In_order for the
trajectory to stay on this boundary, we need d = z/C > 0.
However, we have < 0 from (8) as due to (9) g(Z) > 0 when

T < 0. Then Z, and hence dN, necessarily become negative after
some time. Thus, the trajectory has to leave this boundary.
Furthermore, we have V < 0 on the trajectory of the system.
As a result, once the trajectory leaves a boundary it can never
hit it again.

We proceed with other three boundaries in a similar fashion.
Assume that the trajectory of the system hits the boundary
d = dmin = —d* < 0. Since from (8) and (9) > 0,
and d necessarily become positive after some time. Hence,
the trajectory has to leave the boundary. On the other hand,
when & = Tye — 2, we have g(Z) < 0 and d > 0. Thus,
we obtain d > 0 after some delay and z < 0 from (8), forcing
the trajectory out of the boundary. Finally, in the case of 7 =
—2* < 0 we have g(Z) > 0 and d < 0. Thus, after some time
d < 0, and hence 2 > 0 from (8). Again, the trajectory leaves
the boundary and never returns back due to the non-increasing
Lyapunov function V.

In the case of a boundary solution, once the trajectory
reaches the equilibrium point it stays on the boundary. For
example, assume that x* = Z,,4, < C. Then, from (6)
we have # = # > 0. Furthermore, d = 0 from (8). Thus,
the trajectory stays on the boundary and at the equilibrium
point. In conclusion, the system (7) with boundaries given
in (4) and (6) is globally asymptotically stable on the set
Q= {(z,d) € R?: 0 <2 < Tpaz and 0 < d < dppaz}
by LaSalle’s invariance theorem [18].

B. Stability for a Single Link with Multiple Users

The analysis for a single link with multiple users is a
fairly straightforward generalization of the single-link single-
user case discussed above. The system has again a unique
equilibrium point (x*,d*) 2, at which (1/a;) dU;(x})/dz; is

2The proof of uniqueness for a more general case which also captures this
special case will be provided in Proposition III.1
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independent of i, z* = C and d* = (1/a;)dU;(z})/dz;.
Defining the system around this equilibrium point as in (8),
we obtain

Zi(t) = gi(&) —oud(t) , i=1,..., M,
3 1 B
t) = 5;%7

where « := [ag,...,ap] is the user pricing vector,
Ui(z1),...,Up(xzpr) are strictly concave user utility func-
tions, and the functions g;(x;) are defined similarly as in the
case of (9).

Let us define the generalized set Q as

12)

Q={(xd) e RMH: 2 <& < &4 aw — 27 , Vi
and — d* < d < dpax — d*},
(13)
where d,,q, and ; ;qz are upper-bounds on d and z; respec-
tively.

We next define a Lyapunov function on the set Q, similar
to the one of (11):

i )2+ C(d)?.

az

M:

(14)

i=1
The rest of the analysis is similar to the one in the case of
a single link with a single user, and therefore it will not be
carried out. In particular, V= Zf\il O% 9i(Z;)Z; <0, and is
equal to zero only if z; = 0Vi = d=0. Again, the system
is globally asymptotically stable.

C. Stability for a General Network Topology with Multiple
Users

We finally establish the stability of the system under a
general network topology with multiple links, and with a
general routing matrix A as defined in (1). The generalized
system is described by (again without the boundary effects)

di(t) = dUi(xs) Di(x,t),i=1,...,M,
L gt (15)
dl(t):a 1,1=1,...,L,

where D;(x,t) = > cp di(x,t), 1 == > ;,cp, Ti and

C) is the capacity of the I*" link. For this general case,
equilibrium point or points of the system cannot be described
explicitly. Therefore, we first investigate the uniqueness of the
equilibrium. Toward this end, we assume that A is a full row
rank matrix with M > L which is in fact no loss of generality
as non-bottleneck links on the network have no effect on the
equilibrium point, and can be safely left out.

Proposition IIL.1. When A is full row rank, the system (15)
has a unique equilibrium point.

Proof. By setting ;(t) and d;(t) equal to zero for all [ and i
one obtains
Ax=C

f(a,x) = ATd ,

(16)
A7)
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where d = [dy,...,d] is the delay vector at the links, and
the nonlinear vector function f is defined as
1 dU; 1 dUpy
f = | — —
(o, %) a; dz; T apg dag

Suppose that there are two different equilibrium points
(x3,d}) and (x3,d3). Then, from (16) it follows that
A, —x3)=0 o (xj-x3)TAT =0
Similarly, from (17) we have
flo,x}) — f(a,x3) = AT(d} — d3) .
1 —x3)7 from left we obtain

—f(a,x3)] =0

Multiplying this with (x

(x7 —x3)" [f(a,x7)

We rewrite this as

M «
Z(nyz - X&)Ti {dUi(xli) -

: (677 del
1=1

dU;(x3;)
d(Ei

Since U;’s are strictly concave, each term in the summation
is negative, with equality holding only if =7, = 235;. Hence,
we conclude that z* has to be unique, that is

From this, and (15), it immediately follows that D;,: =
1,..., M, are unique. This does not however immediately
imply that d;,l =1,..., L, are also unique. To establish this,
we first multiply (17) from left by A :

Af(a,x*) = AATd

Since A is of full row rank, the square matrix AAT is full
rank, and hence invertible. Thus, we obtain a unique d* for a
given equilibrium flow vector x*:

d* = (AAT) 1 Af(a,x¥)

As a result, (x*,d*) constitutes a unique equilibrium point for
the system (15). O

We note that the unique equilibrium point of the system
is only an approximation to the Nash equilibrium since the
effect of the i*" user on the delay, D;(x,t), s/he experiences
has been ignored. This approximation becomes more accurate
as the number of users in the network increases. In addition,
we again assume that « is chosen in such a way that the
equilibrium point is an inner solution, d* < d, 4.

Defining the delays at lipks, d;, and user flow rates, z;,
around the equilibrium as d; := d; — dj and z; := z; — x],
respectively, for all [ and i, we obtain the following system
around the equilibrium:

xz(t) = gz(i'z) - azDz(t) ,i=1,...

Zx“l—l L,

i:lER;

where D; = ZleRi d;, and gi(.) is defined as in (9). For the
time being, we ignore the effect of boundaries on the system.

’M7
(18)
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Let us define a set (as before) as

Q = {(ia a) € RMJrL : 71';( S i’z S Timax — x;

and — dzk < CZl < dl,maa: - dzk ) Vi al}7

where dj ;02 and 2; yma. are upper bounds on d; and z;,
respectively.

We next define a Lyapunov function on the set Q as a
generalized version of the one of (14):

L
+YCi(dy)®
=1

The function V/(i,d) is positive definite on €2, and its
derivative along the system trajectories is given by

2
Zl_

where the inequality follows because g;(%;) Z; < 0Vi. Thus
V(x,d) is negative semidefinite. Let S := {(x,d) €

V(%,d) = 0}. It follows as before that S = {(X,d) €

% = 0}. Hence, for any trajectory of the system that belongs

identically to the set S, we have X = 0. It follows directly

from (18) that

M

VD= @)

i=1

19)

)& <0,

Q

X—OéX—Oégz( ) =0V
= D;=0Vi=d, =0V,

where the last line is due to the fact that D = AT d* and the
matrix A is of full row rank. Therefore, the only solution
that can stay identically in S is the zero solution, which
corresponds to the unique equilibrium of the original system.

We now investigate the effect of the boundaries given in
Q and described by (4) and (6). First, we analyze the case
when the unique equilibrium is not on the boundaries of the

set ). Consider the case where d = dl ma d* for some

link | = [ while all links except [ are in equiiibrium. Then, for
any user ¢ whose flow passes through link /, and z; > 0, we
have ¢;(Z;) < 0, and from (18) Z; < 0. Therefore, Ei:ieRl Ti

decreases until it is negative, which in turn makes Jz < 0.
Thus, the trajectory leaves the boundary. Since V <0, the
trajectory cannot hit the same boundary again. The case d; =
—dj can be handled in a similar fashion. We note that, the
case d; = —dj, if it occurs in equilibrium, corresponds to an
empty buffer at the link /, where the link has no effect on the
system for the given set of parameters. As a result, that link
can be left out.

For the boundary at ; = x; e —2;, we have D; > 0 given
that all other users passing through links on the path of the i‘"
user are in equilibrium. Then, it immediately follows from (18)
that #; < 0 and the trajectory leaves the boundary for good.
Otherwise, we have a boundary solution with a subset of users
transmitting with maximum feasible flow rate, Z; 44, Which
contradicts with the initial hypothesis on the equilibrium point.
A similar argument holds for the case z; = —x], i.e., either
there is a boundary solution or the trajectory eventually leaves
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the boundary and does not hit it again due to the Lyapunov
analysis.

We next analyze the case of the equilibrium being on the
boundary. Similar to the single user case, once the trajectory
reaches the equilibrium point it stays on the boundary. Con-
sider the case where &} = x; ;4 for the it" user, while other
users have equilibrium flows that are less than the maximum.
Then, from (6) we have i; = 7; > 0. Furthermore, it follows
from (18) that d; = 0,VI. Thus, the trajectory stays on the
boundary. We note that the other cases can be handled in a
similar fashion. These results are summarized in the following
theorem, where we again invoke LaSalle’s invariance theorem:

Theorem IIL.2. Let A be full row rank. The system

Iz(t): illga(:jl) —aiDi(X7t)7 7::1’"'7M7
. T

dt)=—=—-1,1=1,...,L

l() Cl 5 ) ) )

with the unique equilibrium point (x*,d*), and boundary
point behavior described by (4) and (6), is globally asymp-
totically stable on the set

Q= {(l’,d) € RMJrL :0 S £ S Ti,max

and 0 < dy < dy ey Vi o1}, O

IV. STABILITY UNDER INFORMATION DELAY

It was shown in Section III that the system described
by (4) and (6) is globally asymptotically stable under a general
network topology. We now investigate the global stability of
the system under arbitrary propagation delays, which we are
also going to refer as information delay, and denote by r.
First, we analyze the simple case of a single link with a single
user to gain insight into the problem. Next, we generalize the
analysis to a general network with a single bottleneck node
and multiple users.

A. Stability for a Single Link with a Single User under
Information Delay

For the case of a single user on a single link, we modify
equation (7) describing the system around the equilibrium
by introducing a maximum propagation (information) delay
r between the user and the link, which we assume to be a

constant :
#(t) = (&) — od(t =) o
d(t) = F#(t —)

Notice that (21) is a set of delay differential equations. Such
systems have been studied extensively in [19], [20]. Here we
will particularly make use of the methods presented in Chapter
4.2 of [20]. From (21), we immediately have

Z(t) = g(2(t)) — ad(t + 1) + ald(t +7) —

Z(t
0/21 +S

d(t —r)],

and

f(t—r) g(Z(t—1)) —ad
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On the set Q) defined by (10), we define a Lyapunov function

~ (@t — 7)) + )

(u —r)du ds,
C/Qr/+s

which is positive definite. Taking the derivative of V' along
the system trajectories, we obtain

—g(Z(t —r)Et—1)
9 [0

A f

Using the simple algebraic inequality

V(,d) =
(22)

V(z,d) =

+ T(t—r)x(t+s—r)ds

2t —r)—3*(t+s—r)]ds

25(t — )&t +s5—1) <F(t—71) + F(t+5—7),
one can bound the derivative V above by
. ) 4
V(z,d) < Zg(3(t —1)E(t — ) + =72t — 1)
a C
Thus, V(i,d) can be made negative semi-definite by im-
posing a condition on the maximum delay . In this case, let
S = {(z, d) e Q: V(& d) = 0}. It follows from (9) that
= {(#,d) € Q : & = 0}. Hence, for any trajectory of the

system that belongs to S, we have £ = 0. It also follows
directly from (21) that

i=0=21i=0=g(E)=0=>d=0.

Therefore, the only solution that can stay identically in .S is
the zero solution, which corresponds to the unique equilibrium
of the original system (7).

We thus conclude that the system (21) is asymptotically
stable by LaSalle’s invariance theorem if the maximum delay
r satisfies the condition

C
r< —k, (23)
20
where k is defined as
k= inf —( )
—2*<Z<Tmaz—T* x

In order to gain further insight into this condition, we compute
the parameter k for the specific case when the utility function
is taken as the logarithmic one, that is U(x) = ulog(z + 1).
In this case we obtain

—Uu

- T @+ D@ +1)

r+1 x*+1

9(z) =
and hence

1 . U U
= min = .
0<2<Tmaz (T + 1)(@* +1) (Timaz + 1)(z* +1)
The requirement on the delay term r is dependent on the

equilibrium z*, and since =* € [0, Z.,42), @ safe bound on r
is

uC
20(T e +1)2°

r<
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Of course a better bound can be obtained on 7 if we know that
¥ <K Tpmaz, and that the trajectory also remains in a small
neighborhood of the equilibrium, x*. This would very much
be dependent on the application at hand.

The analysis of the effect of boundaries on the system is
almost identical to the one of the case without delay. Assume
that d(t) = dymas ¥Vt € [—7,0]. In order for the trajectory to
stay on the boundary at ¢ > 0, one needs Z(t) > 0 Vt €
[—7,0]. However, we have Z(t) < 0 from (21). Hence, after
some time, d < 0, and the trajectory leaves the boundary. Since
V < 0 the system trajectory may never return to the boundary.
The analysis of the remaining boundaries can be handled in
a similar way, and will be omitted. This now brings us to the
following theorem, where again LaSalle’s invariance theorem
is invoked:

Theorem IV.1. The system

dU (z(t)) od
' 1 dz

d(t) = ax(t —r)—1,

(=)

with the unique equilibrium point (x*,d*) and boundary point
behavior described by (4) and (6) is globally asymptotically
stable on the set Q) if the maximum delay, r, in the system
satisfies the condition

kC
r—_—,

2
here k := inf .
yhere _"L'*S"z'lgrinlaz_w* | ( >/‘T|

B. Stability for a Single (Bottleneck) Link with Multiple Users
under Information Delay

We now generalize the preceding analysis of a single link
with a single user to multiple users by introducing user specific
maximum propagation delays r = [rq,...,7rys] between the
link and the users. The system has a unique equilibrium point
(x*,d*) as characterized in Section III. Modifying the system
equations (12) around this equilibrium point by introducing
the associated maximum propagation delays, we obtain

i.l( ) = gz(jz(t)) _azd(t_'ri) yi=1,...,M

M
62 t—’f’z

Following an approach similar to the one in the single user
case with delay, one gets for the i user

i‘i(t —r) = gz( (t - n)) -y 0?( t)

ij t+s—rj)ds.

27’7J 1

(24)

We again define a positive definite Lyapunov function on
the corresponding set ) defined by (13) :
} Moy 3
Vxd = ) ;(;ﬁi(t — 7))+ C(d(t))?
i=1 (25)

(u —r;)du ds.
OZ/QTL/+S )
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Taking the derivative of V' along the system trajectories, we
obtain

V() = 3 = gu@i(t — ri))at ~ )
0 11711 M
+é [2 ZZQfl(thl)i‘](t‘FS *T‘j)ds
AL o -
+— [Z2(t —7) — 22(t+ 5 —7)]ds
C ;/—27‘7;

We bound the derivative V above by
M

VEed < Y ggi(ii(t )it = 1)

l_iM T
MG

The derivative of V' can be made strictly negative by impos-
ing a condition on the maximum delay in the system, r,q, =
max; r;. In this case, let S := {(X, d)eQ:V(x,d) =0} 1t
follows as before that S = {(X,d) € Q : x = 0}. Hence, for
any trajectory of the system that belongs identically to the set
S, we have x = 0. It also follows directly from (24) that

FH(t —ri)

x=0=x=0=g(#)=0Vi=d=0,

where we have made use of the fact that the matrix A is
of full row rank. Therefore, the only solution that can stay
identically in S is the zero solution, which corresponds to the
unique equilibrium of the original system. As a result, the
system (24) is asymptotically stable by LaSalle’s invariance
theorem if the maximum delay in the system, 7,,,,, satisfies
the condition

Tmazr < 2]\47 y (26)
a'f)'L(J/.'L'
where o4, and k,,;, are defined as

Qg = MaxX q;

1

. . 9(Z;) (27
Kmin := min inf -

i 2 <E T mae—at | Ty

Notice that the bound on the maximum delay required for the
stability in the system is affected by, among other things, the
maximum pricing parameter and the number of users.

We next investigate the effect of boundaries on the system,
first in the case of the equilibrium being an inner one. Consider
the case d(t) = dypar — d* YVt € [—r,0]. Then, for any user 4
with #;(t) > 0, we have g;(#;(t)) < 0, and from (24) &;(t) <
0,t>0. Therefore, Zz Z; decreases until it is negative, which
in turn makes d < 0. Thus, the trajectory leaves the boundary.
Since V' < 0, the trajectory cannot hit the same boundary
again. A similar analysis also applies to the case d = —d*.
For boundaries on #;, assume that all users but the i*" one are
in equilibrium, and Z; = ®; maes — x} Vt € [—7,0]. Then, we
necessarily have d > 0 after some time, and hence :ﬁi < 0.
Thus, the trajectory leaves the boundary, and never returns due
to the strictly decreasing nature of the Lyapunov function V.
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Similar arguments also apply to the case when all users but
the #t" one are in equilibrium, and Z; = —z}. In the case of
boundary solutions, the analysis is identical to earlier ones and
therefore will be omitted. The following theorem now extends
the results of Theorem IV.1 to the multi-user case.

Theorem IV.2. The system
_ dUi(x(t)

(El(t) d id(Xﬂf ’f’) s 1= ].7 .,]\47
Ti
1 M
d(t) = C in(t ri) — 1,

with the unique equilibrium point (x*, d*), and boundary point

behavior described by (4) and (6), is globally asymptotically

stable on the corresponding set ) defined by (20), if the

maximum delay, rpmqy, in the system satisfies the condition
kminc

2M Qnas

where Qupar and kp,i, are defined in (27).

Tmaz <

V. AN IMPLEMENTATION OF THE CONGESTION CONTROL
SCHEME

The user responses in Section II are based on a continuous
time formulation. In reality, however, users update their flow
rates only at discrete time instances corresponding to multiples
of RTT. Hence, for implementation purposes, we discretize
the reaction function of the i*" user, and normalize it with
respect to the RTT of the user. In addition, we need a specific
utility function in order to quantify the user response in (6).
Logarithmic utility functions are widely used in the literature
not only because they have nice properties like strict concavity
but also because they adequately capture several important
concepts economics, such as the law of diminishing returns.
We choose the following utility function for i*" user:

Ui(z;) = u;log(x; + 1),

where u; is a user specific utility parameter. The optimal user
response is, therefore, a discretized version of (6), and is given
by

N
wit 1) = {0) + | g de}] L 28

leER;

where x; is a (user specific) step-size constant.

The congestion control scheme characterized by the user
response (28) is implemented in a Game (theory) Based
Congestion Control (GBCC) protocol using the Network Sim-
ulator 2 (ns-2) [21]. The simulator ns-2 is chosen because it
provides both a realistic environment for testing the proposed
congestion control scheme and a level of abstraction for easy
implementation. GBCC is a simple window based protocol
for best-effort data traffic. It is devised as an end-to-end
sliding window protocol [22], where the sender side adjusts
its window size according to the reaction function (28). For
simplicity, receiver window size is chosen as one. We also
implement a version with a simple slow start mechanism

IEEE INFOCOM 2003



where the window size is increased by one per RTT until a
packet loss is observed. We next provide an overview on the
GBCC scheme by summarizing the sender and receiver side
functionalities.

A. GBCC Protocol

As one of the goals of GBCC protocol is compatibility with
existing protocols, most of the functionality is on the sender
side. Specifically, the sender side has the following functions:

o The sender puts sequence number and time stamp into the
packet header. It estimates RTT and base RTT, which is
calculated as the minimum of the RTTs up to that point,
by using the received acknowledgment (ack) packets. The
estimation method for RTT is the same as the one in [23].

o If a double ack is received, i.e. the same packet is ac-
knowledged twice by the receiver, then it retransmits the
packages beginning from the last acknowledged packet
number. We note that this go back n scheme [22] is
implemented for its simplicity. In fact, better mechanisms
with receiver window size being larger than one do exist.

o The sender updates the window size according to (28)
using the current value of queueing delay, which is taken
as the difference between the current RTT and base RTT.
The window size, W, is strictly positive.

o If no ack packet is received within, say 2 RTT, then
sender retransmits previous packets beginning from the
last acknowledged one, and reduces the window size.

The receiver side, on the other hand, has the function of
acknowledging received packets. If no packet is received for a
specific time, say 4 RT'T, last received packet is acknowledged
again.

VI. SIMULATIONS

We simulate the proposed congestion control scheme,
GBCC, on ns-2. The underlying protocol used for routing is
the standard IP. Links and queues are chosen to be duplex and
drop-tail, respectively. For simplicity, we fix the packet sizes
to 1,000 bytes. In most of the cases queueing delays on the
links are much smaller than the propagation delays that we
choose. Hence, RTT’s are approximately equal to twice the
propagation delays.

First, we simulate GBCC without a slow start mechanism in
the simple single-user single-link case. The parameters in (28)
are chosen as a = 30 and v = 10,000. The buffer size is
50K B and propagation delay on the link is varied from 5ms
to 25ms, and to 100ms. We observe in Figure 1 that as RTT
gets too large, the system becomes unstable in accordance with
the analysis in Section IV. Notice that it takes up to 7 seconds
for the flow to reach its capacity in this simulation. Therefore,
we use the slow start version of GBCC for the rest of the
study.

We next explore the interaction between GBCC and TCP on
a single bottleneck link with 10ms propagation delay. GBCC
is TCP-friendly [1] since its long-term rate does not exceed the
one of the TCP flow as observed in Figure 2. The fluctuation in
the first two seconds is due to the slow start mechanism which
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x10 Single Link Single User with various Delays
" T T T T T

— - RTT 10ms
—+ RTT 50ms
— RTT 200ms

Flow Rate (bps)

Time (seconds)

Fig. 1. A single user on a single link with RTT" = 10, 50, and 200ms. This
version of GBCC has no slow start mechanism.

GBCC versus TCP at a Bottleneck Node
T T T T T

— = TCP Flow
—— GBCC Flow
—— Total Flow

Flow Rate (bps)

Time (seconds)

Fig. 2. GBCC flow versus TCP flow on a bottleneck link with 10ms
propagation delay.

x10° Multiple Users with random Delays at a Bottleneck Node
T T T T T

— - User 1 (2ms)
—+— User 2 (15ms)
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Fig. 3. Three out of 20 flows with various propagation delays (2ms, 15ms,
and 50ms) sharing a 5Mbps bottleneck link.
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requires a packet loss for termination. In the final simulation
on a single bottleneck link, there are 20 identical users with
parameters o« = 50, v = 400,000, and propagation delays
are randomly chosen between 2ms and 50ms according to
a uniform distribution. We observe flows of 3 specific users
with respective propagation delays of 2ms, 15ms, and 50ms
in Figure 3. The system again converges to the equilibrium,
however similar to TCP, GBCC favors flows with smaller RTT
as it is a window-based scheme.

We then carry out a simulation with three users on a simple
three node network topology with two 5Mbps links of 20ms
propagation delay as shown in Figure 4. While flows of users
1 and 2 pass through links 1 and 2 respectively, the flow of
user 3 passes through both links. Cost parameters are chosen
as a = 30 and v = 400,000. User 3 is ‘charged’ more
than others through summation of queueing delays as s/he
uses resources on both links. Thus, having the same utility
parameter as others, s/he obtains a smaller fraction of the
bandwidth. Figure 5 depicts the flow rates of users 2 and 3,
as observed in node 2.

(%) nam: mome/alpcan/ns-allinone-2.1h9/ns-2.1h9/tclex/ghcesim/out.nam

175

File Views Analysis | /ome/alpcan/ns-allinone-2.1b9/ms-2.1b9/kcl/ex/gbcesim/out nam |
44 ‘ - ‘ | | > ‘ » H Step: 1.6ms
l l f | ——

2924139

Lo |o|=8 [Q[B]]
©

Fig. 4. A Nam screenshot of the simple network. Links are symmetric, and
have a capacity of 5Mbps with 20ms propagation delay.

x10° Flow Rates at Node 2, Medium Delay Case
12 T T

— — User2
—— User3
—— Total Flow

10f A 1
|

Flow Rate (bps)
o
T

Time (seconds)

Fig. 5. Flows of users 2, 3, and total flow at node 2 are observed for 15
seconds.
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4578266  Step: 1.3ms
——

4\l‘b['»H
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[TTATE]

Fig. 6. A Nam screenshot of the general (arbitrary) topology network.

° 3 Selected Flows in General Network Topology
15 T T

— — User 1
] —+— User2
— User3

o
T
|
|
U

Flow Rate (bps)

Time (seconds)

Fig. 7. Three flows from nodes 7, 8, and 9 to node 6 are shown where these
users are symmetric and have the following cost parameters: o = 30 and
u = 200, 000.

Finally, we simulate 10 users with various routes and expe-
riencing various information delays on a seven node arbitrary
topology network (Figure 6) with all links except the one
between nodes 5 and 6 having capacity of 5Mbps each. The
link between nodes 5 and 6, on the other hand, has a capacity
of 10Mbps. The links have equal propagation delays of 5ms
each, except the links to nodes 7, 8, and 9, which have delays
of bms, 10ms, and 25ms, respectively. The users at nodes 7,
8, and 9 all have connections to node 6 and each experiences
a different propagation delay. Figure 7 shows only the flows
of these three users as measured at node 6. We note that
although the number of links in this simulation is equal to the
number of users, the number of bottleneck links that affect
the equilibrium flows is actually smaller. Hence, the routing
matrix A is of full row rank.

IEEE INFOCOM 2003



VII. CONCLUSION

In this paper, we have developed and analyzed a congestion
control game with a linear pricing scheme based on variations
in the queueing delay experienced by the users. User demand
for bandwidth is captured by a broad class of utility functions
that are strictly increasing and strictly concave. The objective
function for each user in this noncooperative game is defined
as the difference between the pricing and utility functions.
Using a network model based on fluid approximations, and
through a realistic modeling of queues in the network, we
have established the existence of a unique equilibrium, and
the global stability of the equilibrium point for a general
network topology. We have also provided sufficient conditions
for system stability on a bottleneck link shared by multiple
users under non-negligible propagation delays.

We have implemented and simulated a simple, window-
based, end-to-end congestion control scheme in ns-2 network
simulator based on the theoretical foundations of the conges-
tion control game. We have investigated several properties
of the scheme developed through simulations on a single
bottleneck link and on various general network topologies with
non-negligible propagation delays. These simulations reveal
that the implemented scheme not only confirms the theoretical
results but is also TCP-friendly.

There still remain a few open issues and many directions
for future research. For example, there is still ample room for
improvement in the implementation of the congestion control
scheme, such as increasing the receiver window size and fine
tuning the slow start mechanism. Another topic for further
study would be to devise a methodology for choosing the
pricing parameter «. Yet another direction for future research
would be the derivation of improved (less restrictive) sufficient
conditions on the maximum delay allowable in a general
network, to ensure stability of the overall system.
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