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Abstract—One key component of recent pricing-based conges-
tion control schemes is an algorithm for probabilistically setting
the Explicit Congestion Notification bit at routers so that a
receiver can estimate the sum of link congestion prices along a
path. We consider two such algorithms—a well-known algorithm
called Random Exponential Marking (REM) and a novel algo-
rithm called Random Additive Marking (RAM). We show that
if link prices are unbounded, a class of REM-like algorithms are
the only ones possible. Unfortunately, REM computes a biased
estimate of total price and requires setting a parameter for which
no uniformly good choice exists in a network setting. However,
we show that if prices can be bounded and therefore normalized,
then there is an alternate class of feasible algorithms, of which
RAM is representative and furthermore, only the REM-like and
RAM-like classes are possible. For properly normalized link
prices, RAM returns an optimal price estimate (in terms of mean
squared error), outperforming REM even if the REM parameter
is chosen optimally. RAM does not require setting a parameter
like REM, but does require a router to know its position along
the path taken by a packet. We present an implementation of
RAM for the Internet that exploits the existing semantics of the
time-to-live field in IP to provide the necessary path position
information.

I. INTRODUCTION

Recent theoretical advances in optimization-based conges-
tion control have led to the development of protocols in which
congestion signals—or prices in the common terminology—
are computed by links in the network and communicated to
sessions. The prices represent Lagrange multipliers in a global
optimization problem of maximizing the aggregate user utility
in the network subject to a capacity constraint on each link. By
knowing only the total price along its own path, each session
can independently adapt its rate in a greedy fashion, optimizing
its individual utility minus cost. When prices are set correctly
by the network, the joint actions of all the users track the
globally optimal rate allocation.

This work was supported in part by the National Science Foundation
(NSF) under grant numbers ANI-9980552, EIA-0080119, CCR-0133664 and
CCR-9634665. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

In considering the issues surrounding the deployment of
such protocols in IP networks, the explicit congestion notifi-
cation (ECN) bit in the IP header [1] has emerged as a key
tool for practical implementations. The importance of ECN
is three-fold. First, ECN decouples congestion signals from
packet loss—a necessary condition for operating networks
with low loss and low delay. Second, an ECN bit already
exists in the standard IP header. As we will see, a single bit
is sufficient to communicate prices. Thus the debate can focus
on how to use the existing bit rather than on how many bits
(if any) should be reserved.1 Third (and most relevant to this
paper), it has been demonstrated that routers can encode prices
by probabilistically setting the ECN bit in such a way that
the end-to-end marking probability encodes the sum of prices
along a path. Thus receivers can estimate the total price along
a session path, by recording the fraction of marked packets.
Optimization-based congestion control protocols consist of

a component running at each link that sets the link’s price
and marks packets, and a component executed at end-hosts
that estimates the total price and sets the transmission rate
accordingly. Two classes of protocols have been proposed to
date. The first, originally described by Gibbens and Kelly [2],
employs an open-loop marking policy at links and adjusts rates
iteratively at the end hosts. In the second class [3], [4] end-
hosts set rates deterministically, and links combine an iterative
algorithm for setting prices with probabilistic packet marking
for encoding prices. We concern ourselves with this latter class
of protocols where the link price computation and marking
scheme are easily separable.
In this work, we assume link prices have converged to

steady-state values and focus on the the problem of commu-
nicating the sum of fixed link prices along a path by means
of packet marking, which we now formalize. Consider a set
of links 1, . . . ,n forming an end-to-end path from a source
to a receiver. Associated with each link i is a non-negative
price si. Let zn = ∑ni=1 si denote the sum of prices along the

1In actuality, two bits in the IP header have been reserved for the purposes
of ECN. However, only one of these bits is used to carry congestion signals
along the forward path.
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path. As data packets traversing the path arrive at a receiver,
the receiver must determine zn and provide this quantity as
feedback to the sender. We assume that a single bit in the
packet header is available for the purpose of communicating
this sum, as is the case in the current IP standard. The problem
of path price estimation is to design a marking algorithm—
that is, some strategy for computing the price bit Xi at each
link i—to allow the receiver to estimate the total price zn.
To be practically implementable, a marking algorithm must
obey the following design constraints: First, the algorithm
must be fully distributed with each link making use of locally
available information, namely, the price si and, if i> 1 the bit
Xi−1 computed at the previous step. In some cases, the step
index i may also be considered available information. Second,
the algorithm should not be required to maintain per-flow
state, since this might impose prohibitive storage overheads
on routers serving many simultaneous flows. This constraint
is clearly satisfied if a link may not retain any memory of
how previous packets were marked. Although there is no
deterministic marking algorithm under these conditions, it is
possible to probabilistically set the bit so that the end-to-end
marking probability encodes zn.
In this work, we consider two probabilistic packet marking

algorithms—one by Athuraliya and Low [4] called REM,
and a novel algorithm we have developed called RAM2—and
characterize a large class of such algorithms with a generalized
model. We show that REM is essentially the only method in
this class possible when there are no further restrictions on
si, except si ≥ 0. However, this estimator is biased and, more
serious, requires setting a parameter for which no uniformly
good choice exists. When the additional information of the
step index i is known at the ith step and when we assume that
each si is bounded by some fixed upper bound, say 0≤ si ≤ 1,
our RAM method becomes feasible. Moreover, when link
prices are restricted to a finite interval, variations of RAM and
REM are the only possible methods in the modelled class. We
compare REM and RAM in terms of two common metrics.
RAM is shown to be optimal in terms of mean squared error
(M. S. E.) for the uniform a priori distribution of the average
price zn/n. Finally, we present an Internet implementation of
RAM, exploiting the existing semantics of the IP time-to-live
field to provide the step index i (or an estimate thereof) to
each link along a path.
The rest of this paper is organized as follows: In Section

II, we present the REM and RAM algorithms along with a
generalized model of possible marking algorithms. In Section
III we identify key properties of all feasible protocols and
establish the uniqueness of REM for unbounded prices and of
REM and RAM when prices are bounded. Sections IV and
IV-B compare REM and RAM in terms of the tail probability
of their price estimates and consider the problem of setting a
key parameter in REM. In Section IV-C we compare REM
and RAM in terms of mean squared error and establish
the optimality of RAM under this criterion. We present an

2We will define the acronyms REM and RAM below.

implementation for RAM for the Internet in Section V. Due to
space limitations, we have omitted proofs for several theorems
presented in this paper. The interested reader can find all
proofs in our technical report [5].

II. PROBABILISTIC PACKET MARKING

A. Random Exponential Marking

The Random Exponential Marking (REM) scheme proposed
by Athuraliya and Low [4] is, as far as we are aware, the only
existing marking algorithm for price estimation. In REM, the
designer selects some base ϕ > 1. The initial price bit X0 is
set to 0. The ith link, where i ≥ 1, sets the price bit to 1
with probability 1−ϕ−si. It is convenient to think in terms of
conditioning on the incoming price bit Xi−1. If Xi−1 = 1 then
Xi= 1 as well, whereas if Xi−1 = 0 then Xi= 0 with probability
ϕ−si and Xi = 1 with probability 1−ϕ−si.
The bit arriving at the receiver is Xn. It is clear that Xn = 0

with probability ∏n
i=1 ϕ−si = ϕ−∑ni=1 si , and Xn = 1 otherwise.

Hence the expectation E[Xn] = 1−ϕ−zn . To estimate the total
price zn the receiver first collects N packets, obtaining N
independent samples of the price bit X (1)

n ,X (2)
n , . . . ,X (N)

n . The
receiver then takes X = (∑Nj=1X

( j)
n )/N, and estimates zn to be

− logϕ(1−X).
Note that since logϕ(x) is a non-linear function, the expec-

tation E[− logϕ(1−X)] is not equal to − logϕ(1−E[X ]) = zn.
By Jensen’s inequality, since log is a strictly convex function,
we have

E[− log(1−X)] > zn.

However, even though REM is a biased estimator, as N→ ∞
we do have almost everywhere convergence − log(1−X) →
zn, a.s.. Note also that in REM, the local computation at each
step depends only on the local price si and the previous bit
Xi−1, but does not depend on the step index i. Finally, observe
that the base ϕ is a parameter that must be chosen by the
designer. Athuraliya and Low give no prescription for setting
ϕ, but do observe that it should be chosen so as to keep the
end-to-end marking probability away from the extreme values
of 0 and 1.

B. Random Additive Marking

Suppose we restrict the range of each link price si to
be 0 ≤ si ≤ 1, and suppose the step index i is known for
local computation at the ith step. Under these conditions, an
alternative scheme is feasible. Again, we set X0 = 0. At each
step i ≥ 1, link i leaves the price bit unchanged (Xi = Xi−1)
with probability (i−1)/i. With probability si/i the link sets
the bit to 1 and sets it to 0 otherwise. The resulting Xn is a
0-1 random variable with E[Xn] = ∑ni=1 si/n. We thus have an
unbiased estimator for zn/n; we simply collect N i.i.d. samples
and compute the average X . Since the step index is known at
each step, the receiver can determine n and thus obtain zn. We
call this scheme Random Additive Marking (RAM).
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C. Generalized Protocol Model

The most general one-bit on-line assignment protocol can
be described as follows. Consider the ith step, where i ≥ 1.
The incoming price bit Xi−1 is either 0 or 1. We then assign
the outgoing price bit Xi according to a 0-1 random variable
whose distribution is conditional on the value of the incoming
bit. Any possible assignment of the price bit at step i can be
defined in terms of the conditional probabilities of setting the
output bit to 1, which depend on i and si. Thus, we have

pi = pi−1 f (i,si)+ (1− pi−1)g(i,si), (1)

where

p j(s) = Pr[Xj = 1],
f (i,si) = Pr[Xi = 1|Xi−1 = 0],
g(i,si) = Pr[Xi = 1|Xi−1 = 1].

In this work, we restrict our focus to protocols where f and
g are continuous in the local price si. Note that this class
of protocols is quite large, and includes protocols defined
by any computable real functions f and g since, in the
strict sense of computability, all computable real functions are
continuous (See [6] Theorem 4.3.1, page 108). We discuss
some implications of this restriction further in Section III-D.

III. CHARACTERIZATION OF PROTOCOLS

In this section we provide a characterization of feasible
protocols, such that, for all (s1,s2, . . . ,sn) the estimator con-
verges to zn, when sample size N → ∞. In Subsection III-A
we prove that the probability pn = Pr[Xn = 1], as a function
of (s1,s2, . . . ,sn) must be a function of ∑ni=1 si, and must be
continuous and strictly monotonic in this single argument.
In Subsections III-B and III-C we give a complete analytic
characterizations of all feasible protocols for the cases of
unbounded and bounded link prices.

A. Strict monotonicity as a function of ∑ni=1 si

No matter what it does at each step i, a marking algorithm
ultimately produces a 0-1 random variable Xn. Thus looking at
the problem externally any algorithm can be characterized by
the probability that Xn= 0. This probability must be a function
of s1,s2, . . . ,sn; we will call it pn(s1,s2, . . . ,sn).

Theorem 1: If for all (s1,s2, . . . ,sn) the estimator con-
verges to zn = ∑ni=1 si asymptotically, as the number of sample
points N → ∞, pn must be a function of the sum zn, and be
continuous and strictly monotonic in its single argument zn.

Some intuitive ideas behind the proof of Theorem 1 are as
follows. The key claim is that pn is a function of the sum alone.
If pn(s1,s2, . . . ,sn) = pn(s′1,s

′
2, . . . ,s

′
n), then they produce iden-

tical distributions, for all sample size N. In order to be able to
converge to the sum, using the strong Law of Large Numbers,
we can show that pn(s1,s2, . . . ,sn) = pn(s′1,s

′
2, . . . ,s

′
n) implies

∑ni=1 si = ∑ni=1 s
′
i. Then using a geometric argument, and the

Intermediate Value Theorem, we can show that the converse
also holds, namely ∑ni=1 si = ∑ni=1 s

′
i implies pn(s1,s2, . . . ,sn) =

pn(s′1,s
′
2, . . . ,s

′
n). The complete proof can be found in our

technical report [5].

B. Solutions of functional equations over [0,∞)

Now we fix i ≥ 1. To simplify expressions, define s =
∑ij=1 s j and t = si+1. Consider the functional equation trans-
ferring the probability from step i to i+1:

h(s+ t) = p(s) f (t)+ (1− p(s))g(t). (2)

Note that implicitly, all of these functions can depend on i,
which is fixed.

Theorem 2: Suppose h, p, f and g are continuous real
valued functions defined on [0,∞), and satisfy the functional
equation (2) for all s, t ≥ 0. Assume furthermore that p is
strictly monotonic and bounded, and h is non-constant. Then
there exists a constant 0 < ψ < 1, such that each function
h, p, f and g is of the form c+ c′ψx for some constants c and
c′. More precisely, there exist constants 0< ψ < 1, and a,b,c
and d, such that

p(x) = a+bψx

f (x) = c+(1−a)dψx

g(x) = c−adψx

h(x) = c+bdψx

The proof of this theorem can be found in [5].
In the following we will write ϕ = ψ−1, thus ϕ > 1.
In order to be a probability and strictly monotonic, the

constants a and b in the function p must also satisfy

0≤ a,a+b≤ 1, and b 
= 0. (3)

We note that given this complete characterization, it is easy
to see that REM corresponds to the choice of constants a= 1
and b = −1 for p(s). There is a dual choice of a = 0 and
b= 1, which we will call REM∗.
For all parameters (technically for all computable param-

eters) a and b satisfying (3), the function p(·) is realizable
as the probability function of some one-bit on-line protocol
as defined. In fact, if n = 1, we can just take X1 such that
Pr[X1 = 1] = a+ bϕ−s1 . This is legitimate since a+ bϕ−s1 is
always between a and a+b, and thus 0 ≤ a+bϕ−s1 ≤ 1, for
all s1 ≥ 0. For n > 1, inductively we can assume Pr[Xn−1 =
1] = a+bϕ−(zn−1) as pn−1, then we let f (sn) = a+(1−a)ϕ−sn
and g(sn) = a− aϕ−sn . Again it is easy to see that both
0 ≤ f (sn),g(sn) ≤ 1, for all sn ≥ 0. It follows that pn(zn) =
h(zn) = a+ bϕ−zn . We will call all these feasible protocols
REM-like.
For any fixed ϕ, the question of what choices of a and b

are the best remains unanswered. It can be shown [5] that, in
terms of M.S.E., REM and REM∗ are the best choices of all
these REM-like protocols with the same ϕ.
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C. Solutions of functional equations over [0,1]
In the previous subsection, we gave a complete character-

ization of probability functions of all admissible one-bit on-
line protocols as defined before, provided that si ∈ [0,∞) i =
1, . . . ,n. When we have the further restriction that si ∈ [0,1] i=
1, . . . ,n, there are other solutions to the functional equations,
which we turn to in this subsection.
Fix i ≥ 1 and consider again the functional equation (2),

except now f and g are only defined for x ∈ [0,1], and p is
defined for x ∈ [0, i] and h is defined for x ∈ [0, i+ 1]. Note
that implicitly, all these functions can depend on i, which is
fixed.

Theorem 3: Suppose h, p, f and g are continuous, real
valued functions defined on [0, i+ 1], [0, i], [0,1] and [0,1],
respectively, and satisfy the functional equation (2), for all
s ∈ [0, i] and t ∈ [0,1]. Assume furthermore that p is strictly
monotonic and bounded, and h is non-constant. Then there are
just two classes of solutions:
1) There exists a constant ψ > 0, ψ 
= 1, such that each

function h, p, f and g is of the form a+ bψx for some
constants a and b. Or

2) Each function h, p, f and g is an affine linear function
of x of the form a+bx for some constants a and b.

Here note that all these constants may depend on i.

The proof of this theorem can be found in [5].
The first class of solutions is essentially the exponential

family discussed above.3 As we showed before, if we want the
functional equation to hold over functions defined over [0,∞),
then there is only this first class of solutions with 0 < ψ < 1;
the second class of solutions is not possible. What makes it
possible here is the restriction of the functional equation to a
finite interval.
For a path of length n, denote by θ = ∑ni=1 si/n. Any

admissible protocol of the second class must have Pr[Xi =
0] = a+bθ for some constants a and b (which may depend on
i.) Since a+bθ is a probability, 0≤ a,a+b≤ 1. RAM simply
takes a= 0 and b= 1 and is thus an unbiased estimator of θ.
There is a dual choice that corresponds to a= 1 and b=−1. In
Section IV-C, we show that RAM and its dual are uniquely
optimal with respect to the criterion of Mean Square Error,
among all solutions of the second class.
It is easy to verify that all feasible choices of (a,b) can be

realized in a one-bit on-line protocol when each s j ∈ [0,1],
and if at step i we know the index i. Assume we have the
probability function (∑i−1

j=1 s j)/(i−1) (as in RAM) for the i−1
step. Then let f (si)= a+ i−1

i b+ b
i si, and g(si) = a+ b

i si. These
choices are both legitimate since both a+ i−1

i b= 1
i a+ i−1

i (a+
b), and a+ 1

i b= i−1
i a+ 1

i (a+b), are convex combinations of a
and a+b, and therefore, since both a,a+b∈ [0,1], it follows
that all four numbers f (0) = a+ i−1

i b, f (1) = a+ b,g(0) =
a,g(1) = a+ 1

i b ∈ [0,1].

3For finite interval [0, i], ψ > 1 is possible; but it is easily transformed to
the case with ψ < 1, by reversing the map x 
→ i− x. For the infinite interval
[0,∞), ψ > 1 is impossible, and we get 0 < ψ < 1.

D. Discussion

Although we have shown that REM and RAM are the only
feasible protocols among a large class of candidates, a fully
general claim eludes us at this time due to the continuity
assumption mentioned in Section II-C. Indeed, we know of at
least one example of a theoretically valid, albeit impractical
protocol defined by non-continuous functions f and g. Each
node i of the path of n nodes takes the binary representation of
si (the local price) and inserts n 0s between every pair of bits
in this binary representation. The resulting sequence of bits is
then shifted i bits to the right. Let this new value be called
s′i. The marking part of the protocol proceeds just like RAM,
except that the s′i are used instead of the si. The receiver can
then estimate the sum zn (and, in fact, the individual si values)
by estimating the marking probability to σn bits of precision,
where σ is the number of bits used to represent si.4

IV. EVALUATION

A. Comparison of Tail Probabilities

We next consider the receiver’s problem of estimating the
price of a path using either RAM or REM for marking
packets. Suppose the receiver collects N packets, giving it N
samples of the price bit. Let B = ∑Nj=1X

( j)
n be the number

of samples for which the price bit is set. The receiver can
then estimate the path price by estimating the end-to-end
marking probability. Let p denote the true end-to-end marking
probability. The estimated marking probability is p̂=B/N. For
now, we assume the path length n is known to the receiver.
To simplify expressions, we will drop the superscript for

the path price notation, thus

z=
n

∑
i=1
si.

Let ẑ be the price estimate provided by either algorithm. For
RAM, we have

ẑ= p̂ n, (4)

whereas for REM,

ẑ= − log(1− p̂). (5)

The true path price z can also be expressed using equations
(4) and (5) by substituting the true marking probability p for
the estimated probability p̂ on the right-hand side. Informally,
we can think of the efficiency of a marking algorithm as
the number of samples required to estimate the true price
with high confidence. This notion is captured in the metric of
error probability, denoted err(ε) and defined as the probability
that the price estimate falls outside of some range about the
true price, where the range is determined by a parameter ε.
Formally,

err(ε) = 1−Pr[(1− ε)z≤ ẑ≤ (1+ ε)z] (6)

4Note that f and g are clearly computable, and the natural generalization
of these functions to real functions is non-continuous. However, this fact does
not contradict the continuity of computable real functions, since f and g as
defined above are not real functions, but functions from strings to strings (due
to the non-uniqueness of the binary representation of si).
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It is natural to compare REM and RAM on the basis of
efficiency, and the error probability provides one tractable
metric for doing so.
Since both algorithms use the estimated marking probability

p̂ to estimate the price, it is also useful to relate the acceptable
variation in ẑ (as defined by the parameter ε) to an equivalent
variation in p̂,

err(ε) = 1−Pr[(1− δ−) p ≤ p̂≤ (1+ δ+) p], (7)

where δ− and δ+ depend on the value of ε, the marking
probability p, and the choice of marking algorithm. As will
become clear below, we must distinguish between the values
of δ for the upper and lower tail since these may not be equal.
Noting that the price estimates (4) and (5) are increasing in

p̂, we may conclude that

ẑ= (1− ε)z ⇔ p̂= (1− δ−) p (8)

ẑ= (1+ ε)z ⇔ p̂= (1+ δ+) p (9)

Taking RAM as an example, let us fix a value of ε and
require that

Pr[ẑ≤ (1− ε)z] = Pr[p̂≤ (1− δ−) p] (10)

Pr[ẑ≥ (1+ ε)z] = Pr[p̂≥ (1+ δ+) p]. (11)

We can now solve for the values of δ− and δ+ that make this
requirement true. Using equation (4) and observation (8), we
have

ẑ= (1− ε)z= (1− δ−) pN. (12)

Using the fact that z= pN we can rewrite (12)

(1− δ−) pN = (1− ε) pN

Thus, for a fixed ε ∈ (0,1) we may set δ− = ε for the case of
RAM. Essentially identical reasoning establishes that δ+ = ε.
In the case of REM, a more complex relationship holds.

Using equation (5) and observation (8), we can write

ẑ= (1− ε)z= − logϕ(1− (1− δ−)(1−ϕ−z)),

Solving for δ−, we have

δ− =
ϕ−(1−ε)z−ϕ−z

1−ϕ−z (13)

Applying the same reasoning for the upper tail gives

δ+ =
ϕ−z−ϕ−(1+ε)z

1−ϕ−z (14)

To facilitate the comparison of REM and RAM, we adopt a
network model in which link prices are independent random
variables uniformly distributed on the interval [0,1]. This
model is perhaps not representative of the true distribution
of congestion prices in a real network, where a relatively
small fraction of links are highly congested and the majority
of links are uncongested. The benefit of using this model is
its simplicity; the expected path price E[s] is proportional to
path length.
To gain some understanding of how the error probability

behaves as path length increases under our simple network

model, we generated a set of nmax links with prices uni-
formly distributed on [0,1]. We then compute the end-to-
end marking probability for a path consisting n links where
n = 1,2, · · · ,nmax for both REM and RAM. Since we expect
the performance of REM to depend on the choice of parameter
ϕ, we consider two different values, ϕ = 1.01 and ϕ = e, as a
baseline for comparison. Finally, for fixed values for the error
tolerance ε and the number of samples N, we can compute the
resulting δ+ and δ−.
Since we know the true marking probability (given a set of

link prices), we can compute the error probability (6) exactly.
Treating each packet sent as a Bernoulli trial with probability
of heads p, we have

Pr[ẑ> (1+ ε)z] =
n

∑
B=�n (1+δ+) p�

r(n,B, p) (15)

Pr[ẑ< (1− ε)z] =
�n (1−δ−) p�

∑
B=0

r(n,B, p), (16)

where r(n,B, p) =
(n
b

)
pB (1− p)(n−B) is the probability mass

function for a Bernoulli random variable. The error probability
defined in (6) can also be written

err(ε) = Pr{ẑ /∈ [(1− ε)s,(1+ ε)s]},
from which it is easily seen that err(ε) is the sum of equations
(15) and (16).
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Fig. 1. Error probability as a function of path length for RAM and for two
parameterizations of REM. We observe that RAM yields and error probability
that is largely independent of path length and that this error probability is
matched by REM only at specific path lengths, which depend on the value of
the parameter ϕ.

Figure 1 shows the dependence of error probability on path
length for two parameterizations of REM (ϕ = 1.01 and ϕ = e)
and for RAM. For this plot, we have fixed the number of
samples at 1000 and the error tolerance parameter ε at 0.1.
The data plotted are averaged over 10 independently generated
sets of link prices. We observe several interesting features in
these results. First, the error probability of the RAM price
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estimate is unaffected by path length. Second, the REM error
probability does depend on path length, with the two different
parameterizations yielding error probabilities comparable to
RAM at different path lengths. This result implies that the
appropriate choice of ϕ may be path dependent. We note also
that the error probability for ϕ = e can approach 1 at long
path lengths. This situation corresponds to an extremely high
marking probability for which no unmarked packets are likely
to be seen within 1000 samples.
These results suggest that RAM is well-suited for marking

in a network environment where sessions see varying path
lengths and path prices. We have seen that REM can also
perform comparably to RAM but that its performance depends
on the choice of parameter ϕ. To compare the two algorithms
fairly, we must investigate the issue of parameter setting in
REM more thoroughly.

B. The Effect of Parameter ϕ in REM
Figure 1 shows that the REM algorithm with ϕ = e performs

quite well at short path lengths but performs poorly for longer
paths, whereas ϕ = 1.1 performs well on longer paths but
poorly on short paths. This result suggests that a version of
REM in which ϕ is selected according to the path length5

might have performance comparable to RAM.
In the case of either REM or RAM, one must collect a

significant number of packets in order make a close estimate
of path price. The number of marked packets B is a Bernoulli
random variable. However, since the number of samples is
large, we may approximate B as a normally distributed random
variable with mean µ = N p, variance σ2 = N p(1− p) and
CDF F(x;µ,σ).6 Under this approximation, the error proba-
bility can be written

err(ε) ≈ 1−
∫ (1+δ+) pn

(1−δ−) pn
dF(x;µ(p),σ(p)), (17)

where we have made explicit the functional dependence on p,
the end-to-end marking probability.
Recall that the REM marking probability depends on the

total path price s and the parameter ϕ. The limits of integration
in (17) depend on p as does the pdf dN. Thus, the error
probability is a continuous function of both s and ϕ.
Figure 2 shows the error probability for REM as a function

of ϕ for values of the total path price s ranging from 0.1
to 10. Path prices ranging over three orders of magnitude
is well within the realm of possibility for REM due to the
varying number of hops and levels of congestion seen along
different paths, and due to the fact that link price is not actually
constrained to [0,1] in REM. The plots shown in the figure
suggest that it is impossible to fix a single value for ϕ that will

5Recall that in the network model underlying Fig. 1, path price is propor-
tional to path length.

6One rule of thumb for evaluating the validity of the normal approximation
to the binomial is, for a binomial distribution with parameters N and p, that
N p≥ 5 and N p(1− p)≥ 5 [7]. These conditions are satisfied in our model for
N > 200 in the case of RAM and REM with ϕ = e. For REM with ϕ = 1.1,
the conditions are satisfied for N > 200 for all path lengths greater than a
single hop.
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Fig. 2. Error probability as a function of REM parameter ϕ for three values
of total path cost S = sn. Note that the x-axis is on a logarithmic scale.

yield a low error probability for all paths. Rather, it appears
that the appropriate choice of ϕ is indeed path dependent.
In particular, for a given path with path price s, there is an
optimal parameterization ϕ = ϕ∗(z) for which error probability
is minimized.
Although ϕ∗ is path dependent, it is still necessary for each

router along a path to use the same value when marking an
individual flow. Incorporating such “path optimization” into
REM would certainly add complexity to the implementation.
For example, setting ϕ∗ on a per-flow basis would require
either per-flow storage at routers or including the value of
ϕ∗ in each packet header. More fundamentally, the value of
ϕ∗ depends on the end-to-end price, which is precisely the
quantity to be estimated. Thus it would be necessary to jointly
refine estimates of the price and ϕ∗ as the protocol proceeds
(and demonstrate the convergence of such an approach).
We next consider how well REM can perform in the best

possible circumstances—if the path price (and, hence, ϕ∗) is
known in advance. To address this question, we generated a
sequence of links with prices uniformly distributed on [0,1].
For each experimental run, we computed ϕ∗ for all paths
starting at the first link and traversing a fixed number of
hops in sequence. We obtained ϕ∗ numerically by applying
the normal approximation discussed above and then running
a gradient descent algorithm on the resulting error probability
function. For each path length, we collected 1000 samples
of the marking bit with both RAM and a version of REM
configured with ϕ∗ for that path. We then compared the
reduction in error probability as samples are accumulated for
RAM and the optimally parameterized REM.
Figure 3 shows results for path lengths of 3 and 20 averaged

over 10 experiment iterations. We see that RAM still performs
as well or better than REM even when ϕ∗ is known in advance.
Figure 4 shows the dependence of error probability on

the error tolerance parameter ε for both RAM and optimally
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Fig. 4. Sensitivity of error probability to the parameter ε for a path of 10 links with constant price of 0.5 on the left and 0.05 on the right. These figures
show the importance of correctly normalizing link price for RAM.

parameterized REM. For this analysis, we fix the price on each
link to the same value and evaluate (6) for a range of ε. The
figures presented use a path of 10 links and 1000 samples. In
the left-hand figure the link price is set to 0.5. It turns out that
RAM slightly outperforms optimized REM here. In the right-
hand plot the link price is set to 0.05. Here optimized REM
clearly outperforms RAM because optimized REM is able to
maintain an end-to-end marking probability close to 0.5, which
RAM cannot do. These results indicate that the performance
of RAM relies on link prices being normalized “correctly”; at
the very least, we require a mean link price close to 0.5.7 We
consider this issue in more detail in Section IV-C In related
results, omitted here for reasons of space, we find unoptimized
REM can perform as badly as RAM (or worse) if ϕ is set far
from its optimal value.

7Whether link prices can be normalized correctly remains an open question.
For now, however, we will assume that such a normalization is possible for
practical implementations.

C. Optimality in terms of Mean Square Error

The comparison among different statistics θ̂ for the same
quantity θ is, in general, a multi-faceted endeavor. Several
factors enter into consideration. One can compare with respect
to mean, variance or higher moments, or tail distributions (as
we have done above). But in terms of tail distributions, there
is the choice of the parameter ε, and the comparison based
on the quantity Pr[|θ̂−θ|> ε] can vary: one statistic could be
better than another for one setting of ε, but worse for another.
In terms of convergence when the sample number N→ ∞, one
can also discuss the rate of convergence. Finally, there is the is-
sue of prior distribution of the parameter θ itself. If we attempt
to compare REM with RAM there is the additional difficulty
that in REM the estimated parameter ranges over all [0,∞)
while RAM makes some a priori assumption on the range.
Taking into account of all these disparate considerations, one
classical choice of a measure in such cases is called Mean
Square Error (M. S. E.) with respect to an a priori distribution
on θ.
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For this subsection, let us define our parameter to be
θ = ∑ni=1 si/n. To improve the prospects of REM in this
comparison, we can allow the parameter φ to depend on n
as

φ(n) = φ1/n.

In the remainder of this section, we assume that φ implicitly
contains this dependence.
The formulation of M. S. E. in our problem is as follows:

Suppose θ has distribution dµ(θ). For each parameter θ, the
protocol constructs a 0-1 random variable Y with Pr[Y = 1] =
F(θ). Then N i.i.d. samples are taken, and the mean Y is
computed. Then we estimate θ by G(Y), a function of the
mean. The M. S. E. is∫

Θ
EF(θ)[(G(Y )−θ)2]dµ(θ).

As we show in Section III, REM corresponds to F(θ) =
1− φ−θ, and G(Y) = − logφ(1−Y) Unfortunately, REM has
infinite expectation and mean square error, and consequently
performs poorly in terms of M. S. E.,

EF(θ)[G(Y )] = ∞

and
EF(θ)[G(Y )−θ]2 = ∞.

This is because there is a non-zero probability that Y = 1, and
then G(Y) = ∞. Note that this G(Y ) is the inverse function of
F(θ) = 1− φ−θ as defined over the infinite interval [0,∞).
When we compare REM with RAM over [0,1], a natural
modification to REM is to “infer” θ = 1 whenever the statistic
Y > maxF(θ) = F(1) = 1−φ−1. For a more fair comparison
between the two algorithms, it is reasonable to modify REM
by taking its inference function G defined on [0,1] to be

G(Y ) =
{
F−1(Y) if 0≤ Y ≤ 1−φ−1

1 if 1−φ−1 < Y ≤ 1
(18)

Note that [0,1− φ−1] = [F(0),F(1)], so that G is still the
inverse function of F on the range of F , and thus Theorem 4
(presented below) applies. With this modification, REM no
longer has infinite expectation and square error.

Theorem 4: Let F be a continuously differentiable and
strictly monotonic function on [0,1] and let G = F−1 be its
inverse function defined on the image interval of F([0,1]).8

Let N be an integer ≥ 1. Let Y = ∑Nk=1Yk/N where Y1, . . . ,YN
are i.i.d. 0-1 random variables with Pr[Yi = 1] = F(θ). Then
the M.S.E. of G(Y) − θ has an approximate order of 1

N ·∫ 1
0
F(θ)(1−F(θ))

[F ′(θ)]2 dθ. i.e.,

N ·
∫ 1

0
EN,F(θ)[(G(Y )−θ)2]dθ →

∫ 1

0

F(θ)(1−F(θ))
[F ′(θ)]2

dθ,

when N → ∞. Here EN,F(θ) denotes the expectation over the
Binomial Distribution B(N,F(θ)).

8We note that if F is monotonic increasing then this interval is [F(0),F(1)],
and if it is decreasing then it is [F(1),F(0)]. Moreover, where G is defined,
G is also continuously differentiable and G′(F(θ)) = 1/F ′(θ).

The proof of Theorem 4 (see [5]) uses Lebesgue’s Domi-
nated Convergence Theorem [8], [9], and the Chernoff bound
[10]. Intuitively, when we map θ to F(θ) in order to obtain
a Bernoulli random variable, the variance is F(θ)(1−F(θ)).
This variance is “amplified” or “shrunken” by a factor of
1/[F ′(θ)]2 when translated back to the θ-domain. The proof
establishes that the integration of this quantity is indeed
the controlling factor for the M.S.E. comparison. Although
Theorem 4 is stated for the uniform distribution on [0,1] as
the a priori distribution of θ, a similar statement can be proved
for an arbitrary a priori distribution.
For REM, we obtain a lower bound for the M. S. E. using

the following theorem, whose proof can be found in [5]:

Theorem 5: For every φ > 1, with F(θ) = 1−φ−θ and G
defined in (18), the M.S.E. of REM is asymptotically greater
than .54685578

N . More precisely,
1)

N ·
∫ 1

0
EN,F(θ)[(G(Y )−θ)2]dθ → φ−1− loge φ

(logeφ)3
(19)

2)

I(φ) =
φ−1− logeφ

(loge φ)3
, (20)

is strictly monotonic decreasing in [1,φ0), and strictly
monotonic increasing in (φ0,∞), and achieves a unique
minimum at φ0, with value I(φ0) = (φ0+2)2

27(φ0−1) . Here φ0 is

the unique solution to the equation 1
logφ − 1

φ−1 = 1
3 , and

φ0 ≈ 8.577356793, and I(φ0) ≈ .54685578.

We now concentrate on the family of RAM-like estimators,
where F(θ) = a+bθ, and G is the inverse function of F . Here,
from Theorem 3, 0≤ a,a+b≤ 1 and b 
= 0, since F is strictly
monotonic and represents a probability.
We first show that within the family of RAM-like protocols

identified in Theorem 3, the RAM protocol presented in
Section II is optimal in terms of M. S. E.9 To see this,
we compute the difference in variance between an arbitrary
feasible RAM-like protocol and RAM itself. Note that since
the probability functions for RAM-like protocols are affine
linear, E[G(Y )−θ]2 =Var[G(Y )]. For any RAM-like protocol,

Var[G(Y)] = Var[
Y
b

]

=
Var[Y ]
b2N

=
F(θ)(1−F(θ))

b2N

=
1
N

(
θ+

a
b

)(
1−a
b

−θ
)

(21)

RAM corresponds to F(θ) = θ, thus

Var[Y ] =
θ(1−θ)
N

. (22)

9In [5] we establish the optimality of REM and REM∗ within the family
of REM-like protocols. This result is omitted here due to space limitations.
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Hence the difference

N · [Var[G(Y)]−Var[Y ]] =
a(1−a)
b2

+
(
1−b−2a

b

)
θ.

Now we assume θ has a uniform distribution on [0,1], then

N ·
∫ 1

0
[Var[G(Y)]−Var[Y ]]dθ

=
1
2b2

[(a+b)(1−a−b)+a(1−a)]
≥ 0, (23)

by elementary calculation, and since 0≤ a,a+b≤ 1.
We note that this result holds for any distribution on θ that

has expectation 1/2. In particular, this would apply if each si
is independently distributed and symmetric about 1/2.
The inequality (23) is strict, unless (a+ b)(1− a− b) =

a(1− a) = 0, which can happen in one of two ways (since
b= 0 is not allowed). If a= 0 then b= 1 and we have RAM
as presented in Section II. If a= 1 then b= −1 and we have
the dual of RAM with F(θ) = 1−θ. We conclude that in terms
of M.S.E. with respect to uniform distribution (or any other
distribution with expectation 1/2) on θ, RAM (or its dual) is
optimal.
The M. S. E. for RAM is readily computed as follows.

Noting that G(Y) = Y , E[Y ] = θ, and making use of (22) we
obtain

E[(Y −θ)2] =
θ(1−θ)
N

If we assume θ has a uniform distribution on [0,1], then the
M. S. E. is 1/6N Comparing this result with the asymptotic
M. S. E. for REM in Theorem 5, we conclude that, for a
uniform a priori distribution of θ, no matter what choice we
make for the base φ in REM, in terms of M.S.E. it is worse
than RAM over a finite interval.

V. IMPLEMENTING RAM IN THE INTERNET

Implementation of RAM on the current Internet is compli-
cated by the fact that routers are typically not aware of their
position along the path taken by a particular packet. Without
this information, a router clearly cannot determine the correct
marking probability for an incoming packet. One possible
way to address this difficulty is to introduce a field in the
IP header to be incremented at each hop which would contain
the path length. However, requiring a change to a standard
header would be a serious barrier to deployment. In addition,
introducing a new field would effectively make additional bits
available for packet marking and these bits might be used
more profitably by some alternative marking scheme. Since
we are interested in easily deployed single-bit schemes, we
are motivated to explore other solutions.
The time-to-live (TTL) field in the IP header is an 8-bit

field used to limit the maximum lifetime of a packet in the
network. In addition to serving this intended purpose, the TTL
field provides some information about path lengths and thus
could plausibly be used by a marking algorithm. Unlike a
path length field that is initialized to zero and incremented,

TTL is initialized to some positive value and decremented.
One problem with using TTL to perform marking within the
network is that the routers along the path are unaware of the
initial value placed in the TTL. Another problem is that the IP
protocol allows routers to decrement the TTL value by more
than one. Thus, even if a router knew the initial TTL value, it
could not be sure of the number of intervening routers between
it and the source on the basis of the observed value.
In the remainder of this section, we show how RAM can

be implemented in the Internet using only the existing IP TTL
field and a single ECN bit for marking. We do not require that
routers know the initial TTL value. Instead, we will initially
assume that the TTL field is always initialized to the maximum
value of 255. We will show that in the case when the TTL is
actually initialized to a lower value, the protocol still computes
a correct estimate. Conceptually, assuming too high a value is
equivalent to appending a chain of links with zero price to the
beginning of the path, which collectively decrement the TTL
to its actual initial value. However, overestimating the initial
TTL value leads to slower convergence. We therefore adopt a
heuristic, described below, to provide a much better estimate
for initial TTL than the maximal field value. We also assume
that each router knows the amount by which it will decrement
the TTL, but require no knowledge about the behavior of other
routers.
Consider the ith link along a path. Assume that the link

aware of its own price si, and the amount by which it will
decrement the TTL of any packet passing through it, denoted
ki. Let T denote the actual initial TTL value and assume that
the link has obtained a guess Ω of this initial value, where Ω≥
T . We will find it convenient to work with the quantity T̃ =
Ω−T , the amount by which the links overestimate T . Each
arriving packet provides the router with an ECN bit having
expected value θi−1, and a TTL field with value τi. Note that
we may write

τi = T −Ki−1,

where

Ki−1 =
i−1

∑
1

ki

For each packet received, the router computes

ti = Ω− τi
= T̃ +Ki−1.

The value ti is the path position inferred by router i and has
the property ti ≥ i with equality holding in the case that the
TTL field is actually initialized to Ω and each preceding router
only decrements the TTL by one. Also note that necessarily
ti > ti−1 for all i.
Theorem 6: The expected value of the marking bit emerg-

ing from a chain of n routers running Algorithm 1 is

an =
zn

(T̃ +Kn)
.

Proof:The proof is by induction on n, the length of the router
chain. The base case for n = 1 follows trivially from the
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Algorithm 1 TTL-RAM algorithm
Given: si, ki, Ω
Input: (τi,θi−1)
With probability ti

ti+ki
, set θi = θi−1

With probability si
ti+ki

, set θi = 1
Otherwise, set θi = 0
τi+1 = τi− ki
Output: (τi,θi);

Algorithm definition. We provide the inductive step. Consider
the expected value of the bit emerging from router i

θi =
ti

ti+ ki
θi−1 +

1
ti+ ki

si

Using the substitution ti = T̃ +Ki−1 and the fact that Ki =
Ki−1 + ki, we have

θi =
T̃ +Ki−1

T̃ +Ki−1+ ki
θi−1 +

1

T̃ +Ki
si

By hypothesis,
θi−1 =

zi−1

T̃ +Ki−1
.

The theorem follows. �
The receiver can recover the sum of path prices using an

estimate of the marking probability θ̂n and the TTL value of
arriving packets τn+1 = T −Kn. The path price estimate is
simply

θ̂n · (Ω− τn+1)

In practice, it is extremely rare for routers to decrement the
TTL by more than one. We will therefore assume hencefor-
ward that ki = 1 for all i. It is also rare for sources to initialize
the TTL field to its maximum value. The IP standard simply
states that the TTL should be at least as large as the (unknown)
diameter of the Internet [11] with 64 being a recommended
value [12]. The default values chosen by popular operating
systems vary between 30 and 255 [13]. There is a motivation
to choose as low a value as possible to limit the lifetime
of misrouted packets. Unfortunately, we expect the effect on
RAM of a source setting TTL to less than the guessed value
to be slower convergence since the probability of any router
overwriting the marking bit would be reduced.
Figure 5 shows the convergence of RAM for three different

combinations of Ω and T on a 10 link path with a price of 0.5
on each link. For each setting of the parameters we executed
10 simulation runs, collecting 104 packets in each run. The
plots in Fig. 5 show the evolution of the minimum, mean and
maximum price estimates. We see that in all three cases, the
mean price estimate quickly converges to the correct value,
but that the mismatch between Ω and T introduces substantial
variability in the estimate. If we can ensure a small difference
between the initial TTL and the guessed value, RAM can
achieve extremely good performance. Fortunately, it is possible
for a router to make a much better estimate for Ω than the
maximum TTL value by observing the TTL of each packet as
it is forwarded.

Measurements of TTL values taken within the Sprint back-
bone by Jaiswal, et al. [14], suggest that a reasonable guess
for Ω is the smallest power of two greater than τ but at least
32. This result can be explained by observing default values
chosen in practice by operating systems, which tend to equal
or be slightly less (between 1 and 4) than some power of
two and are never lower than 30 [13]. Despite the fact that
initial TTL values are user-configurable parameters in most
modern operating systems, users typically do not modify the
default setting unless extremely long paths are encountered.
Indeed it is likely that in many cases users do not know how
to change these parameters or lack the authorization to do so.
Furthermore, measurements by Begtasevic and Van Mieghen
put the average path length in the Internet somewhere around
16 hops with paths of more than 30 hops being exceedingly
rare [15].
Thus, we define

Ω(τ) = [2λ]25532 (24)

λ = �log2 τ�,
where [x]ba = min(max(a,x),b). Using this rule, the guessed
initial TTL will likely be very close (within 4) to the actual
value. In extremely rare cases, a path may be so long that
the guessed TLL will change at some point along the path.
Consider, for example, a packet with initial TTL of T travers-
ing a long path. For simplicity of explanation, assume T is
a power of 2. The first k = T/2 routers along the path will
correctly set Ω = T . At router, k+1, however, Ω = T/2. The
expected value of the marking bit arriving at this router is
θk = zk/k. The TTL-RAM algorithm at link k+1 will assume
it is the first link along the path since tk+1 = 0 and therefore
overwrite the arriving bit with probability one, destroying all
information about the path prior to itself. Unfortunately, link
k+ 1 cannot distinguish between being the first link in the
path and guessing a value of Ω lower than preceding routers.
It can be shown that the true path price cannot be recovered

by means of local corrections at the links when Ω changes
mid-path. However, this situation can be detected at the
receiver if the initial TTL value T is sent end-to-end by the
source. Specifically, if the receiver sees that T − τn+1 ≥ T/2
then it knows that the value of Ω changed along the path
and the RAM price estimate must be regarded as biased. We
emphasize that such biased estimates are very rare events.
A packet with an initial TTL of 32 (the value used in
older Microsoft operating systems) would be discarded by the
network before generating such an event. A packet with an
initial TTL of 60 (a value used in several real-world operating
systems) would have to traverse 28 hops before reaching a
TTL of 32. A packet with an initial TTL of 128 (the default
value for newer Microsoft operating systems) would have to
traverse 64 hops.

VI. CONCLUSION

In this paper we have considered the problem of estimating
the sum of congestion prices along a path using a one-
bit probabilistic packet marking algorithms. We showed that

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



2000 4000 6000 8000 10000
N

3

4

5

6

7

8
e
s
t
.
P
r
i
c
e

� � 255, T�255

2000 4000 6000 8000 10000
N

3

4

5

6

7

8

e
s
t
.
P
r
i
c
e

� � 255, T�60

2000 4000 6000 8000 10000
N

3

4

5

6

7

8

e
s
t
.
P
r
i
c
e

� � 64, T�60

Fig. 5. Convergence of RAM using the TTL field for different combinations of Ω and T .

REM, the only previously proposed algorithm we are aware
of, is, in fact, essentially unique if link prices are unbounded.
By introducing a finite bound on link prices and allowing
links to know their position along a packet’s path, we found
that an alternate class of algorithms becomes possible. We
introduced RAM, a novel marking algorithm and showed that
RAM together with the existing REM algorithm represent the
only two possible classes of marking algorithms when link
prices have finite bounds. By examining the tail probabilities
of the two price estimates, we demonstrated the difficulty
in setting the parameter ϕ in REM, which makes REM
difficult to deploy in heterogeneous network environments.
Furthermore, we showed that in terms of mean squared error,
RAM out-performs even an optimally parameterized REM
when prices are uniformly distributed. Finally, we showed
that path position information required by RAM is already
available in the form of the TTL field in IP.

The feasiblity of RAM depends on whether link prices are,
in fact, bounded. This is a strong assumption, given the nature
of congestion prices, which represent gradients and thus can,
in principle, take on infinite values. However, this assumption
is not as unrealistic as it might first appear. Prices may be
explicitly bounded when they are are defined in terms of a link
cost function with bounded slope, as they are, for example, in
the work of Gibbens and Kelly [2], who adopt a loss-based
cost model for which prices are explicitly bounded by [0,1].
Even in cases where prices are not naturally bounded, it may
be desirable to work with a truncated price range. Paganini
and collaborators have recently shown that enforcing an upper
bound on price can simplify problem of setting the REM
parameter ϕ and argue that natural price ranges do in fact exist
for realistic networks [16]. Of course, truncating prices enables
RAM as a feasible alternative. A comparison of RAM and
REM under truncated prices would thus be a natural direction
for further study.

More generally, comparing REM and RAM under realistic
conditions remains a challenging problem. Future work to be
done in this area includes accurately characterizing the prior
distribution of link prices and path prices in large networks.
RAM performs best when link prices can be effectively
normalized to a finite range, symmetrically distributed about a
mean value. Such a distribution is unrealistic, however, if only
a few links on any given path are likely to be congested. An-

other open question is how to relate the performance of price
estimation algorithms to the performance of the congestion
control schemes in which they are embedded.
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