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Abstract— We present a detailed analysis of the loss 

performance in an optical buffer having access to a single 
outgoing channel.  Such a system  - consisting of a number of 
fiber delay lines - differs significantly from a conventional 
electronic buffer, in that only a discrete set of delays can be 
realized for contention resolution.  This leads to an 
underutilization of the channel capacity, which reduces overall 
performance.  Our analysis does not require any special 
assumptions about the burst- or packet-size distribution, which 
allows us to study the impact this distribution has on 
performance.  For the important special case of fixed-sized 
bursts, it reveals, amongst others, that matching fiber delay line 
length with burst duration is not necessarily the optimal solution 
in terms of loss performance.  It further reveals that, in general, 
this optimal solution is function not only of burst-size 
characteristics, but of the offered load as well, making the buffer 
design process a delicate task. 

Keywords — burst switching; fiber delay lines; loss probability; 
optical buffers 

I. INTRODUCTION 
As advances in Dense Wavelength Division Multiplexing 

(DWDM) push fiber transmission capacities well beyond the 
Tbit/s, electronic switches and routers are becoming the 
bottlenecks of the backbone network.  All-optical packet 
switching (OPS) could alleviate the problem, but the 
technology is expected to be still a few years away [1].  As 
intermediate solution, optical burst switching (OBS) has been 
proposed by some [2]-[4].  Both solutions, however, confront 
switch designers with several major challenges, of which the 
lack of optical RAM is but one.  Fiber delay lines (FDLs) 
partially fill that gap, and several architectures based thereon 
have already been studied [5]-[7]. 

Few analytic results concerning the loss and queueing 
behavior of such buffer systems have been published so far 
[8], and to the best of the authors’ knowledge the approach 
followed here is new.  Our main result is the derivation of the 
probability generating function of the scheduling horizon in a 
buffer of infinite size, as seen by arrivals.  This scheduling 
horizon can be thought of as being the analogue of the 
unfinished work or virtual waiting time in classical queueing 
theory.  From that result - the detailed derivation of which we 
choose to present as Appendix - several measures of interest 
are then derived, such as the system capacity and the loss 
probability in a finite system.  Although the analysis can easily 

be extended to yield results concerning e.g. sojourn times, we 
primarily focus on loss probability here, given that this figure 
will be the determining factor for the system's overall 
performance. 

II. MODEL 
We focus on a single WDM channel and assume 

contention for it is resolved by means of an FDL buffer, which 
can delay, if necessary, optical bursts (or packets) until the 
channel becomes available again.  Unlike conventional 
buffers, however, it can not delay bursts for an arbitrary period 
of time, but only for multiples of a basic unit D, called the 
granularity of the FDLs [8].  Each burst is thus either delayed 
n⋅D time units, for some n=0,1,…N, or is dropped.   Hereby, N 
is the size of the FDL buffer, the maximum achievable delay 
being N⋅D. 

We assume time is slotted and we will use the duration of a 
single slot as the unit of time.  A natural choice for the slot 
length would be the clock cycle in a synchronous system.  By 
making the length of a slot sufficiently small, however, and 
scaling everything accordingly, results for an asynchronous 
system can be retrieved as well. 

Thus, for instance, the granularity D would be expressed as 
an integer number of slots.  Note that when D equals one 
(slot), the optical buffer functions as a conventional time-
slotted one, i.e., it is no longer degenerate, since then any 
delay in the range 0 to N can be realized. 

The sizes of consecutive bursts will be denoted by Bk  
(k=1,2,…), expressed as number of slots needed for their 
transmission.  We assume the Bk form a sequence of iid 
(independent and identically distributed) random variables 
(rv's), distributed according to some common distribution 
Pr[Bk=n], with mean E[B] and probability generating function 
(pgf) 

 .]nBPr[z]z[E)z(B
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Note that no further specific assumptions are needed in the 
remainder of the analysis. 
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As for the arrival process, we assume that at most one new 
burst can arrive during each slot, which happens with 
probability p independently from slot to slot.  That is, we 
assume Bernoulli arrivals, the counterpart of the Poisson 
process in continuous-time models.  Burst interarrival times, 
denoted τk, are then iid rv’s as well, with mean 1/p and a 
geometric distribution 

 .),1n(pp]nPr[ 1n
k K=⋅==τ −  (2) 

(We hereby adopted the standard convention of denoting 1-p 
by p .)  This geometric distribution can be shown to be 
memoryless, in accordance with the Bernoulli arrival process. 

III. ANALYSIS 

A. Main result 
Let us assume the buffer is of infinite size, so that no loss 

occurs.  Denote by Hk the scheduling horizon as seen by the k-
th arrival.  It is, by definition, the earliest time (measured in 
slots) by which all previously arrived bursts will have left the 
system, and is thus, as mentioned before, the equivalent of the 
virtual waiting time in conventional queues. 

In Fig. 1, the relation between Hk and Hk+1 is illustrated.  
With that figure at hand, it is rather straightforward to 
establish that 
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Hereby, x is the so-called ceil of x, the smallest integer 
greater than or equal to x.  The standard notation [x]+ is 
shorthand for max(0,x). 

When the k-th burst sees a scheduling horizon Hk upon 
arrival, it will have to be delayed by at least that amount to 
avoid contention.  Since the buffer is degenerate, however, this 
delay can not be realized exactly, the closest match being 
given by D⋅Hk/D.  (Note that Hk/D represents the index of 

the FDL the k-th burst must traverse.)  Delaying and 
transmitting this burst pushes the scheduling horizon (just after 
arrival) to 
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Taking then into account the burst interarrival time τk 
immediately gives (3). 

When the system is stable, i.e., when it can reach 
stochastic equilibrium, the distributions of the Hk converge, 
for k→∞, to a unique equilibrium distribution, which does not 
depend on the initial condition of the system.  Associated with 
this distribution is a common pgf, denoted H(z), whose exact 
form is derived in Appendix. 

B. System Capacity 
The finite granularity of the FDLs leads to voids, as 

illustrated in Fig. 1, reducing channel utilization and lowering 
the system's overall capacity. 

A system with an infinite (optical) buffer does not reach 
steady-state when overloaded, but grows unbounded, reflected 
in e.g. the fact that 
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Based on this, one can define a maximum tolerable arrival 
intensity pmax.  From the results in Appendix, it follows that 
pmax is solution of  
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(The symbols εk represent the D different complex Dth roots of 
unity, see Appendix.)  The solution is thus function of the 
FDL granularity D and the (complete) burst-size pgf B(z), or, 
equivalently, the (complete) burst-size distribution.   

A sufficiently close approximation, function of  D and the 
mean burst size E[B] only, is given by 
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consistent with the observation made in e.g. [8], that each 
burst creates a void on the channel of  size, on average, about 
D/2. 

With this maximum tolerable arrival intensity corresponds 
a maximum tolerable load, given by 

D D

Hk

Hk+1

τk

kth arrival

(k+1)st arrival

Bk

void

 
Fig. 1.  Evolution of the scheduling horizon H from one arrival to the next.  

For notation, please refer to the text. 
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which is thus, in general, less than unity. 

C. Loss Probability 
Estimates for the loss probability (LP) in an (optical) 

buffer of finite size can be derived from the distribution of the 
unfinished work in a system of infinite size, which quantity we 
will denote by Hinf from now on.  Given the maximum 
achievable delay in the finite system is N⋅D, one can use the 
heuristic 
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where ρeq is defined as 
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This quantity can be considered as an equivalent load, in 
which the effect of the voids, and thus the finite granularity of 
the FDLs, is already incorporated.   (Note that ρeq=1 when 
p=pmax.) 

The heuristic derives from the fact that the (steady-state) 
balance equations for Pr[H=n], in both the finite and the 
infinite system case, have exactly the same structure for small 
values of n.  Up to a scaling factor they will thus also have the 
same solution.  That scaling factor follows easily from the 
normalization condition for probability distributions.  Some 
further calculations then lead to 
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The relation only holds approximately, since the equivalence 
between the balance equations in the finite and infinite case 
breaks down at the boundary where n is in the neighborhood 
of N⋅D. 

Extensive simulations learned, however, that the heuristic 
(9) is far more accurate than (11) for small loss probabilities, 
while the opposite holds true for large loss probabilities.  
(Unfortunately, a mathematical argument that substantiates 
this observation still has to be found.)  Given the former case 
is of more interest to us here, (9) will be used in the remainder 
of this paper. 

The tail probabilities Pr[Hinf > N⋅D] that appear in (9) can 
easily be approximated by inversion of the pgf H(z), by 
retaining only the dominant poles of that function. It can be 
shown that 
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whereby z0 is the dominant pole along the positive real axis.  
Its value can easily be determined by means of a simple 
bisection algorithm.  The constant follows from the 
application of residue theory and is, in its final form, given by  
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The limit in the above can easily be calculated explicitly, its 
numerical evaluation requires but a few lines of code. 

(The function F(z) is related to H(z), see Appendix.  Both 
functions have the same dominant poles.  There are D of them, 
of the form |z0|⋅εk with k=0,…D-1.  The occurrence of multiple 
dominant poles complicates matters somewhat, as compared to 
the case of a single one, but only so to a limited extent.  For a 
more detailed explanation, see eg. [9], pp. 147-148, and 
references therein.) 

The accuracy of the above approximation is illustrated in 
Fig. 2.  Shown there is the loss probability LP as function of 
the load ρ, for various FDL buffer sizes.  Burst lengths were 
assumed to be geometrically distributed, with mean E[B]=100 
(slots), the FDL granularity D=100 (slots).  The simulations 
recorded 108 burst arrivals. 

Clearly, the accuracy of the approximation is extremely 
high, even for high loads and small buffer sizes.  Note that, for 
the parameters values used in Fig. 2, the maximum tolerable 
load ρmax is about 0.66.  For higher loads, the infinite system 
becomes unstable, and, as such, the function H(z) loses its 
meaning as probability generating function.  However, it is 
possible to "extrapolate" the loss formula for loads above ρmax, 
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Fig. 2.  Loss probability as function of the load, for various FDL buffer sizes 
N.  Burst sizes are geometrically distributed with mean E[B]=100 (slots).  The 

FDL granularity D=100 (slots). 
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as illustrated in Fig. 2.  (For these higher loads, the dominant 
pole z0 lies within the unit circle, i.e., in the interval (0,1).  
Further, the constant in the approximation (12) becomes 
negative, but this is compensated by the fact that 1-ρeq 
becomes negative too, so that still a positive loss probability is 
found.) 

D. Fiber Delay Line Dimensioning 
With the above results at hand, we can now easily study 

the influence of various design and traffic parameters.  We 
will present two examples, illustrating the sensitivity of the 
loss performance with respect to the FDL granularity D and 
with respect to the burst size distribution. 

In Fig. 3, the loss probability LP is shown as function of D, 
for geometrically distributed burst sizes, with mean E[B]=100 
(slots).  The size of the buffer was set to N=20.  As was 
already remarked by Callegati [8], there is a trade-off between 
increasing time resolution of the FDL buffer - smaller values 
of D decrease the effect of reduced capacity due to the 
creation of voids - and maximum achievable delay - which, 
assuming N is fixed, can increase only by increasing D.  This 
trade-off leads to an optimal FDL granularity Dopt.  The 
optimum is broad and not very sensitive to the value of N, see 
also [8].  However, as Fig. 3 clearly illustrates, it is rather 
sensitive to the offered load.  It gradually decreases with 
increasing load.  (For the three load levels shown, the 
optimum is to be found at Dopt=135, 99 and 74 respectively.) 

Fig. 4 shows the same curves as Fig. 3, but for 
deterministic, i.e., fixed burst sizes.  The loss probability is 
about two orders of magnitude smaller than it is for 
geometrically distributed burst sizes, at a same load level.  
Again the optimal FDL granularity is function of the load, but 
now it no longer gradually decreases as the latter increases.  
For example, when the load increases above 0.59, the 
optimum moves from Dopt=99 to Dopt=50.  If the load further 
increases, above 0.77, Dopt becomes 33, and so on.   The same 

behavior occurs (at about the same loads) for different values 
of the buffer size N, and for different values of the fixed burst 
size (in which case, however,  Dopt scales accordingly). 

IV. CONCLUSION 
The transform-based analysis of the dynamics of a single-

channel optical buffer, as presented above, yields relatively 
simple formulas for various measures of interest, whose 
computational burden is close to negligible. 

Our study reveals that determining the optimal FDL 
granularity is a delicate task, whereby one should carefully 
take into account the parameters of the traffic being offered to 
the system.  A mismatch can seriously degrade the overall 
performance. 

Extensions of the analysis that would allow for more 
general arrival processes are certainly within reach of the 
method discussed here, given this extension is, from a 
mathematical point of view, more or less decoupled from the 
problems induced by the finite FDL granularity.  Similar, but 
more challenging, is the extension that would allow for 
multiple channels serving a shared FDL buffer.  Evidently, 
that analysis would run into the same mathematical problems 
as those of conventional multi-server queues. 

APPENDIX 
Deriving H(z), the equilibrium pgf of the scheduling 

horizon H as seen by arrivals - the evolution of which is 
described by (3) - basically involves two steps. 

The first relates to what probably is the most basic problem 
encountered in queueing theory: given two random variables, 
say G and τ, determine the distribution of a third, say H, that 
satisfies the relation 

 [ ] .GH +τ−=  (14) 
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Fig. 3.  Loss probability as function of the FDL granularity D (slots), for 

various load levels, in a buffer of size N=20.  Burst sizes are geometrically 
distributed, with mean E[B]=100 (slots). 
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Fig. 4.  Loss probability as function of the FDL granularity D (slots), for 

various load levels, in a buffer of size N=20.  Burst sizes are fixed, of length 
100 (slots). 
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The complexity of a transform-based solution depends 
critically on the exact form of the distribution, or equivalently, 
the pgf of τ, as discussed in e.g. [9].  Here, τ represents a 
generic burst interarrival time, and, as mentioned in Section 2, 
these interarrival times are geometrically distributed here. This 
leads to the simplest instance of the above problem, and one 
can easily show that H(z), the pgf of H, is related to G(z), that 
of G, as 

 .K
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In the above, K is a constant that will be determined at the end 
of our  analysis. 

The second step in the derivation of H(z)  is related to the 
finite granularity of the FDLs: given the pgf of H, determine 
the pgf of  F, related to H through 
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Using the identity 

 ,
otherwise:0

integer) (iDim:1
D
11D

0k

m
k



 ⋅=

=ε∑
−

=
 (17) 

whereby, for notational convenience, we introduced the 
symbols 
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(i.e., the D different complex Dth roots of unity) one can show 
that 
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Basically, identity (18) allows one to selectively map the 
probabilities Pr[H=n⋅D+m] (for n ≥ 0 and m=1,…,D) to the 
corresponding probabilities Pr[F=(n+1)⋅D], as follows from 
(16).  (The case Pr[H=0] directly maps to Pr[F=0].)  In the 
transform domain, this leads to (19) in a quite straightforward 
manner.  Note also that F(zεk)=F(z), reflecting the fact that the 
random variable F takes on only values that are integer 
multiples of D. 

Combining the above two results, also taking into account 
the contribution of B in (3), one obtains 
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Observe that, in light of the remark above, 
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Taking the sum over k=0…D-1, with appropriate weights, one 
may thus write 
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from which F(z) can then be obtained explicitly.  Using the 
identity 

 ∑
−

=

−

−ε
⋅=

−

1D

0k kDD

1D

x)z(
1

D
1

xz
x  (23) 

to simplify the above expression to some extent, the final 
result reads 
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Remains the task of determining the constant K.  The 

function F(z) is a proper pgf, and is thus normalized, i.e., 
F(1)=1. Assuming z=1 in (24) leads to the indeterminate form 
0/0, which can, however, be resolved using the rules of de 
l’Hopital.  One finds 
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Herewith, the pgf H(z) of H has been completely 

determined.  As a final remark, note that the constant K is 
related to the probability of finding the system empty upon 
arrival, 

 .K
p
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 (26) 

This then allows one to determine the maximum tolerable 
arrival intensity pmax , as explained in the text. 
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