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Abstract— We show that the current TCP Vegas algorithm can
become unstable in the presence of network delay and propose
a modification that stabilizes it. The stabilized Vegas remains
completely source-based and can be implemented without any
network support. We suggest an incremental deployment strategy
for stabilized Vegas when the network contains a mix of links,
some with active queue management and some without.

I. INTRODUCTION

TCP Vegas was introduced in 1994 [6] as an alternative

to TCP Reno. Unlike Reno (or its variants such as NewReno

and SACK), that uses packet loss as a measure of congestion,

Vegas uses queueing delay as a measure of congestion [17].

Vegas introduces a new congestion avoidance mechanism that

corrects the oscillatory behavior of AIMD. While the AIMD

algorithm induces loss to learn the available network capacity,

a Vegas source adjusts its sending rate to keep a small number

of packets buffered in the routers along the path. Provided

there is enough buffering, a network of Vegas sources will

stabilize around a proportionally fair equilibrium and packet

loss will be eliminated; see [17] for details. In this paper,

we study the stability of this equilibrium in the presence of

network delay, motivated by two lines of recent research.

First, extensive experimental results have been conducted to

compare the performance of Vegas and Reno, e.g., [6], [1], [8].

Its dynamic and fairness properties have also been studied in

[4], [19], [5], but these papers consider only a single bottleneck

link and network delay is not accounted for in the study of its

dynamics. Optimization based models are used in [20], [17] to

analyze a general network of Vegas. In particular, it is shown

in [17], [15] that any TCP/AQM (active queue management)

protocol can be interpreted as carrying out a distributed

primal-dual algorithm over the Internet to maximize aggregate

utility, and a user’s utility is (often implicitly) defined by its

TCP algorithm; see also [10], [16], [18], [20], [13]. These

models mostly focus on the equilibrium structure, and do

not adequately deal with network delay. To complement this

series of work, we use here a multi-link multi-source model,

described in Section II, that explicitly includes heterogeneous

forward and backward delays to analyze the linear stability

of Vegas around an equilibrium. In comparison with previous

analytical work, we sacrifice global (nonlinear) dynamics in

order to understand the effect of delay on stability of Vegas,

and how to stabilize it.

Second, this paper is motivated by the stability theory

for linear distributed and delayed system recently developed

in [21], [23], [24], [22], [12]. In particular, a TCP/AQM

algorithm is designed in [21] that maintains linear stability

for arbitrary network delays and capacities. It is in the

class of “dual” algorithms of [16], [3] that use static source

algorithms, and it employs a sophisticated scaling with respect

to network delays and capacities to achieve high utilization

and fast response without compromising stability. This form

of arbitrarily scalable stability, however, dictates a specific

source utility function and hence fairness in rate allocation.

By introducing a slower timescale dynamics into the source

algorithm, the TCP/AQM of [21] is extended in [22] to track

any utility function, or fairness, on a slow timescale, provided

there is a known bound on network delays.

The main insight from this series of work is to scale down

source responses with their own round trip times and scale

down link responses with their own capacities, in order to

keep the gain over the feedback loop under control. It turns out

that the (implicit) link algorithm of Vegas has exactly the right

scaling with respect to capacity as used in [21], [22]; see [17].

This built-in scaling with capacity makes Vegas potentially

scalable to high bandwidth, in stark contrast to Reno and

its variants. The source algorithm of Vegas, however, has a

different scaling from those in [21], [22] with respect to delay.

We prove in Section III a sufficient stability condition that

suggests that Vegas can become unstable at large delay. In

Section IV we propose a small modification to stabilize it. We

describe an incremental deployment strategy in Section V that

would allow Vegas sources to work with a mix of routers, some

implementing a queue-clearing AQM and some not. Finally,
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we present simulation results in Section VI to compare the

dynamics of Vegas and its stabilized version.

In contrast to Reno and its variants, Vegas seems particularly

well-suited for high speed networks. Reno and its variants,

with RED, become unstable as network capacity increases

[9], [14]. It also must maintain an exceedingly small loss

probability in equilibrium that is difficult to reliably use

for control. Vegas, on the other hand, scales correctly with

capacity. Moreover, while the equilibrium queueing delay

can be excessive at low capacity, it is reduced as capacity

increases. Other problems, such as error in propagation delay

estimation due to queues and rerouting [19], [17], may be less

severe at high capacity, as buffers clear more frequently.

II. NETWORK MODEL

A network is modeled as a set of L links (scarce resources)

with finite capacities c = (cl, l ∈ L). They are shared by a set

of N sources indexed by r. Each source r uses a set of links

defined by the L × N routing matrix

Rlr =

{
1 if source r uses link l

0 otherwise

Associated with each link l is a congestion measure pl(t)
we will call ‘price’; as we will see below, pl(t) is the scaled

queueing delay at link l. Each source r maintains a rate xr(t)
in packets/sec. In this paper, we are mainly concerned with

linearized model around an equilibrium, so we denote the

equilibrium forward delay from source r to link l by τ⇀
lr and

the equilibrium backward delay from link l to source r by τ↼
lr .

At time t, we assume source r observes the aggregate price

in its path

qr(t) :=
∑

l

Rlrpl(t − τ↼
lr ) (1)

and link l observes the aggregate source rate

yl(t) :=
∑

r

Rlrxr(t − τ⇀
lr ) (2)

Let Tr denote the equilibrium round trip time. We assume that

τ⇀
lr + τ↼

lr = Tr, ∀l ∈ L

Then [17] models TCP Vegas, with its associated queue

management, as the following dynamical system:1

ṗl(t) =

{
1
cl

(yl(t) − cl) if pl(t) > 0
1
cl

(yl(t) − cl)+ if pl(t) = 0
(3)

ẋr(t) =
1

T 2
r (t)

sgn

(
1 − xr(t)qr(t)

αrdr

)
(4)

1The model in [17] is discrete-time and ignores feedback delay in the
interconnection defined by (1) and (2).

where (z)+ = max{0, z}, sgn(z) = 1 if z > 0, −1 if z < 0,

and 0 if z = 0. Here, αr is a Vegas protocol parameter, and

dr is the round trip propagation delay of source r. Price pl(t)
is the queueing delay at link l and qr(t) is the end-to-end

queueing delay of source r (see [17]). Round trip time of

source r is defined as

Tr(t) := dr + qr(t)

with the equilibrium value Tr defined in (II).

An interpretation of Vegas algorithm is that each source

r adjusts its rate (or window) to maintain αrdr number

of its own packets buffered in the queues in its path. The

link algorithm (3) is automatically carried out by the buffer

process. The source algorithm (4) increments or decrements

the window by 1 packet per round trip time, according as

the number xr(t)qr(t) of packets buffered in the links is

smaller or bigger than αrdr. In equilibrium, x∗
rq

∗
r = αrdr,

and the unique equilibrium rates x∗ := (x∗
r , r = 1, . . . , N)

maximize aggregate utility
∑

r Ur(xr) subject to link capacity

constraints, with the utility functions (see [17] for details)

Ur(xr) = αrdr log xr

Hence Vegas achieves weighted proportional fairness [10].

The link algorithm of [21], [22] is the same as (3) of Vegas,

except that, there, c is a virtual capacity that is strictly less than

real link capacity in order to clear the queue in equilibrium.

There, pl(t) can be interpreted as “virtual” queueing delay at

a link fed by the same input but drained at the virtual capacity.

As shown in [21], [22], scaling down ṗl by 1/cl is what gives

delay, real or virtual, the right scaling with respect to network

capacity. In Section V, we will explain how stabilized Vegas

can be incrementally deployed in a network with a mix of

links, generating both real and virtual queueing delays.

III. STABILITY OF VEGAS

The Vegas source algorithm (4) is discontinuous. This can

cause oscillation around the equilibrium. The original Vegas

algorithm prevents oscillation by enlarging the equilibrium

point to a set: source rate xr(t) (or window) is unchanged

as soon as the number xr(t)qr(t) of packets buffered in the

links enters the range [αrdr, βrdr] with αr < βr. It is however

hard to control fairness with αr < βr [5]. Here, as in [17],

we take αr = βr.

In this section, we present a continuous approximation of

the Vegas algorithm (4), derive a sufficient condition for linear

stability based on this approximation. The condition suggests

that a network of Vegas can become unstable when delay
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increases. In the next section, we will indeed propose to use

(a stabilized version of) this continuous function to replace (4)

in order to prevent oscillation due to discontinuity.

A. Approximate model

Note that

sgn (z) � 2
π

tan−1 (ηz)

The approximation becomes exact in the limit as η → ∞.

Hence, consider the following approximation of (4):

ẋr(t) := fr(xr(t), qr(t))

=
2
π

1
T 2

r (t)
tan−1 η

(
1 − xr(t)qr(t)

αrdr

)
(5)

where again Tr(t) = dr + qr(t).
Consider the equilibrium point (x∗, p∗). The rates x∗ are

unique since the log utility function is strictly concave. Sup-

pose the routing matrix R has full rank, so that the equilibrium

prices p∗ = (p∗
l , l = 1, . . . , L) are also unique. Moreover,

assume that only bottleneck links are included in the model

so that p∗
l > 0 for all l. In equilibrium, the source rate x∗

r and

aggregate price q∗
r satisfy

x∗
rq

∗
r = αrdr

Linearize around the equilibrium point,
{

xr(t) = x∗
r + δxr(t)

qr(t) = q∗
r + δqr(t)

Then, to first order,

ẋr = δẋr =
∂fr

∂xr

∣∣∣∣
∗
δxr(t) +

∂fr

∂qr

∣∣∣∣
∗
δqr(t)

where
∂fr

∂xr

∣∣∣∣
∗

= −2η
π

1
x∗

rT
2
r

∂fr

∂qr

∣∣∣∣
∗

= −2η
π

1
q∗
rT

2
r

where we have used Tr = dr +q∗
r . Hence, in Laplace domain,

we have

δxr(s) = −x∗
r

q∗
r

ar

sTr + ar
δqr(s) (6)

where

ar =
2η
π

1
x∗

rTr
(7)

At the links, the equilibrium points (y∗
l , p

∗
l ) satisfy y∗

l = cl.

Linearizing the link algorithm (3) around the equilibrium
{

yl(t) = y∗
l + δyl(t)

pl(t) = p∗
l + δpl(t)

we have, to first order,

δṗl =
∂gl

∂pl

∣∣∣∣
∗
δpl(t) +

∂gl

∂yl

∣∣∣∣
∗
δyl(t)

=
1
cl
δyl(t)

and its Laplace transform

δpl(s) =
1
cls

δyl(s) (8)

In summary, the linearized model of Vegas is described by

(6), (7) and (8). To simplify notation, we assume without loss

of generality for the rest of the paper that all sources have the

same target queue length, αrdr = α for all r (otherwise, take

α to be the minimum αrdr in the stability results that follow).

B. Stability

Following [21], we can express the error equations of (1)–

(2) in matrix form, in Laplace, as

δy(s) = R(s)δx(s) (9)

δq(s) = diag{e−sTr}RT (−s)δp(s) (10)

where

Rlr(s) =

{
e−sτ⇀

ls if Rlr = 1
0 otherwise

The routing matrix R(0) = R determines static relationship

between equilibrium values, i.e.,

y∗ = R(0)x∗, q∗ = RT (0)p∗ (11)

Given any finite positive a, let θ(a) be the unique solution

in (0, π/2) of

θ tan θ = a (12)

as a (strictly increasing) function of a.

We will characterize the stability of Vegas first in terms

of maximum window size and then in terms of minimum

queueing delay. The results below say that Vegas is linearly

stable if the equilibrium window size is sufficiently small

(Theorem 1), or equivalently, if the equilibrium queueing delay

is sufficiently large (Corollary 2).

Theorem 1: Suppose for all r, k0Tr ≥ maxr Tr for some

k0. Let M be an upper bound on the number of links in the

path of any source, M ≥ maxr

∑
l Rlr. The Vegas model

described by (3) and (5) is locally asymptotically stable around

the equilibrium point (x∗
r , y

∗
l , p

∗
l , q

∗
r ) if

max
r

x∗
rTr sinc θ

(
η̂

x∗
rTr

)
<

α

Mk2
0

where η̂ := 2η/π and sinc θ = sin θ/θ.
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Proof: See Section III-C below.

Note that since θ(·) is strictly increasing and sinc(·) is

strictly decreasing, the left-hand side of the stability condition

in Theorem 1 is strictly increasing in the window size x∗
rTr.

Hence the stability condition imposes a limit on the maximum

window size.

Since x∗
rq

∗
r = α, this condition directly translates into

one on queueing delay. The left-hand side of the following

corollary is strictly increasing in q∗
r/Tr, implying a lower

bound on queueing delay.

Corollary 2: Suppose for all r, k0Tr ≥ maxr Tr for some

k0. Let M be an upper bound on the number of links in the

path of any source, M ≥ maxr

∑
l Rlr. The Vegas model

described by (3) and (5) is locally asymptotically stable around

the equilibrium point (x∗
r , y

∗
l , p

∗
l , q

∗
r ) if

min
r

q∗
r/Tr

sinc θ
(

η̂
α · q∗

r

Tr

) > Mk2
0

where η̂ := 2η/π and sinc θ = sin θ/θ.

The next result shows that the stability condition cannot be

satisfied when there are more than one (bottleneck) link in a

source’s path.

Corollary 3: The stability condition cannot be satisfied if

a source has more than one link, i.e., if there is an r with

Rlr = 1 for more than one l.

Proof: The conditions in Theorem 1 and Corollary 2 are

the same, so we will work with Corollary 2. Since θ(·) < π/2,

sinc θ(·) > 2/π. By definition k0 ≥ 1. Hence the stability

condition in Corollary 2 implies

min
r

q∗
r

Tr
>

2M
π

If M ≥ 2, then the right-hand side is bigger than 1. Yet, the

left-hand side cannot exceed 1 since Tr = dr + q∗
r .

We emphasize that the stability condition is only sufficient

in the multiple link case. It is however both necessary and

sufficient in the single-link-homogeneous-source case. We now

illustrate, for this case, the stability region and the effect of

protocol parameter α = αrdr.

Example 1: Single link with homogeneous sources (c, d,N)
Consider a single link of capacity c shared by N homogeneous

sources with round trip propagation delay d. For this case,

ar = a0, Tr = T0, and ωr = ω0 for all sources r in the proof

of Theorem 1; see Section III-C. This implies that the stability

condition (M = 1 and k0 = 1)

q∗
r/Tr

sinc θ
(

η̂
α · q∗

r

Tr

) > 1 for all r (13)

is both necessary and sufficient. Note that the equilibrium

quantities q∗
r and Tr depend on the target queue length α. To

get insight on the effect of protocol parameter α on stability,

we look at a simpler condition.

As noted above, since sinc θ(·) > 2
π , a necessary condition

is

q∗
r

Tr
>

2
π

for all r

Since Tr = d+ q∗
r and q∗

r = α/x∗
r = αN/c by symmetry, this

condition is equivalent to

cd <
(π

2
− 1

)
αN (14)

Hence, a necessary condition for Vegas stability is that the

bandwidth delay product be small. Moreover the stability

region is larger with larger target queue length α or number

N of sources.

C. Proof of Theorem 1

The proof proceeds in three steps. First, we follow the

argument of [23], [22] to show that the Nyquist trajectories

of the loop gain matrix is contained in the convex hull of

N complex functions of jω. Second, we show that at large

enough ω when at least one of these functions has a phase

lag of −π, all of them are contained in the unit circle, under

an appropriate condition, and hence cannot encircle −1 in the

complex plane. Third, we show that this condition is the one

in the theorem.

Step 1: Using the linearized equations (6), (8), (9), (10), the

return ratio seen at the source is described as :

diag
(
ar

x∗
r

q∗
r

)
diag

(
e−sTr

sTr+ar

)
RT (−s)diag

(
1

cls

)
R(s)

For stability, it suffices to show that the eigenvalues of this

function does not encircle −1 in the complex plain for s = jω,

ω ≥ 0. The set of eigenvalues is identical to that of

L(jω) = diag

(
ke−jωTr

jωTr (jωTr + ar)

)
R̂T (−jω)R̂(jω) (15)

where

k =
MarTr

q∗
r

=
2ηM
πα

(16)

and

R̂(jω) := diag

(√
1
cl

)
R(jω)diag

(√
x∗

r

M

)
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From the lemma of [23], the spectrum of L(jω) satisfies

σ (L(jω))

= σ

(
diag

(
ke−jωTr

jωTr (jωTr + ar)

)
R̂T (−jω)R̂(jω)

)

⊆ ρ
(
R̂T (−jω)R̂(jω)

)
·

co

(
0
⋃ {

ke−jωTr

jωTr (jωTr + ar)
, r = 1, . . . , N

})

where co(·) above denotes the convex hull of the N eigentra-

jectories and the origin.

The spectral radius of R̂(jω) satisfies

ρ
(
R̂T (−jω)R̂(jω)

)

≤
∥∥∥∥diag

(
1
M

)
RT (−jω) diag

(
1
cl

)
R(jω) diag(x∗

r)
∥∥∥∥

∞

≤
∥∥∥∥diag

(
1
M

)
RT (−jω)

∥∥∥∥
∞

·
∥∥∥∥diag

(
1
y∗

l

)
R(jω) diag (x∗

r)
∥∥∥∥

∞
= 1

since, by (11), all the absolute row sums are equal to 1. Hence,

σ (L(jω)) ⊆ co

(
0
⋃ {

ke−jωTr

jωTr (jωTr + ar)
, r = 1, . . . , N

})

Let

Λr(jω) :=
ke−jωTr

jωTr (jωTr + ar)

We now show that under the condition of the theorem, at no

ω will the convex combination of Λr(jω) encircle the critical

point −1.

Step 2: Define a0 = minr ar and T0 = maxr Tr. Let ωr,

r = 0, 1, . . . , N , be the value in (0, π/2) that satisfies

ωrTr tanωrTr = ar, r ≥ 0 (17)

Clearly ω0 ≤ ωr for all r. Here ωr, r ≥ 1, is the critical

frequency when the eigenvalue Λr(jω) has a phase lag of

−π. Hence, for ω < ω0 ≤ ωr, the convex combination of

Λr(jω) cannot encircle −1 because phase(Λr(jω)) > −π for

all r. We now show that, for ω ≥ ω0, all Λr(jω) are in the

unit circle and hence their convex combination cannot encircle

−1 either.

For ω ≥ ω0, since k0Tr ≥ T0, we have

|Λr(jω)| =
k

ωTr

√
ω2T 2

r + a2
r

≤ kk2
0

ω0T0
√

ω2
0T

2
0 + a2

0

≤ kk2
0

a0
· 1
ω0T0

· a0√
ω2

0T
2
0 + a2

0

=
kk2

0

a0
· sinc θ(a0)

where the last equality follows from (17) and the definition

of θ(·) in (12). Hence a sufficient stability condition is

|Λr(jω)| < 1 for all r, ω ≥ ω0, or:

sinc θ(a0)
a0

<
1

kk2
0

Step 3: Substituting k, from (16), and a0:

k =
η̂M

α
and a0 = min

r
ar =

η̂

maxr x∗
rTr

into the above condition, we have

max
r

x∗
rTr sinc θ

(
η̂

maxr x∗
rTr

)
<

α

Mk2
0

Since sinc θ
(
η̂(x∗

rTr)−1
)

is strictly increasing in x∗
rTr, we

have
(
max

r
x∗

rTr

)
sinc θ

(
η̂

maxr x∗
rTr

)

= max
r

{
x∗

rTr sinc θ

(
η̂

x∗
rTr

)}

hence the stability condition in the theorem.

IV. STABILIZED VEGAS

In this section, we propose a PD (proportional differential)

controller at each source to stabilize a network of Vegas

sources. We modify the (approximate) Vegas algorithm (5)

into

ẋr =
w

T 2
r (t)

· tan−1 (ηr(t)∆r(t)) (18)

or

ẋr =





min

[
w

T 2
r (t)

(
eηr(t)∆r(t) − 1

)
, ln 2

Tr(t)x(t)
]
, if ∆r(t) > 0

max
[

w
T 2

r (t)

(
1 − e−ηr(t)∆r(t)

)
,− ln 2

Tr(t)x(t)
]
, otherwise

(1

where Tr(t) = dr + qr(t), ∆r(t) = 1− xr(t)qr(t)
αrdr

−κr(t)q̇r(t)
and

κr(t) =
1
a

· Tr(t)
qr(t)

(20)

ηr(t) =
µa

w
· xr(t)Tr(t) (21)
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Here, the parameter w determines the maximum change

in window size per round trip time (for the original Vegas,

the maximum change is 1 packet per round trip time). The

parameters a > 0 and µ ∈ (0, 1) are to be chosen to

ensure stability (see below). The overall gain parameter ηr(t)
is proportional to the current window size: the larger the

window, the more aggressive the response. The gain κr(t)
on the differential term is proportional to the ratio of round

trip time to end-to-end queueing delay of source r, and serves

as a normalization to q̇r(t). The additional differential term

κr(t)q̇r(t) anticipates the future of qr(t). Without this term,

source rate xr(t) will be increased if the number xr(t)qr(t)
of packets buffered in the links is small compared with αrdr.

With this term, even when xr(t)qr(t) is small, the source may

decrease its rate if prices are rapidly growing, i.e. if q̇(t) is

large. We note that a differential term is also used in the link

algorithm of [11], motivated by an optimal control formulation

of AQM design.

Both (18) and (19) have the same equilibrium point as

the original Vegas, and both linearize to the same first-order

equations

δẋr =
∂fr

∂xr

∣∣∣∣
∗
δxr(t) +

∂fr

∂qr

∣∣∣∣
∗
δqr(t) +

∂fr

∂q̇r

∣∣∣∣
∗
δq̇r(t)

where
∂fr

∂xr

∣∣∣∣
∗

= −µa

Tr

∂fr

∂qr

∣∣∣∣
∗

= −µax∗
r

Trq∗
r

∂fr

∂q̇r

∣∣∣∣
∗

= −µx∗
r

q∗
r

Its Laplace transform is

δxr(s) = −µx∗
r

q∗
r

(
sTr + a

sTr + µa

)
δqr(s) (22)

We have chosen ηr and κr so that the lead-lag compensator

in (22) for all sources have a common zero a and pole µa.

In contrast, the algorithm of [22] allows µr to depend on

r, corresponding to unrestricted choice of utility functions.

Hence, we need a slightly different stability proof from [22].

Theorem 4: Suppose for all r, k0Tr ≥ maxr Tr for some

k0. Let M be an upper bound on the number of links in the

path of any source, M ≥ maxr

∑
l Rlr. For any given a >

0 and µ ∈ (0, 1), the modified Vegas model described by

(3) and (18)–(21) is locally asymptotically stable around the

equilibrium point (x∗, y∗, p∗, q∗) if

max
r

xrTr <
αφ

µk0M

√
φ2 + µ2(k0a)2

φ2 + (k0a)2
(23)

or equivalently, if

min
r

q∗
r

Tr
>

µk0M

φ

√
φ2 + (k0a)2

φ2 + µ2(k0a)2
(24)

where

φ = tan−1 2
√
µ

1 − µ

and α = αrdr is the common target queue length.

Proof: The proof proceeds in two steps. First, we follow

the argument of [23], [22] to show that the Nyquist trajectories

of the loop gain matrix is contained in the convex hull of

N complex functions of jω. Second, we show that at large

enough ω when at least one of these functions has a phase

lag of −π, all of them are contained in the unit circle, under

the conditions in the theorem, and hence cannot encircle −1
in the complex plane.

Step 1: Using the linearized equations (22), (8), (9) and (10),

the return ratio seen at the sources can be written as:

diag

(
µx∗

r

q∗
r

)
diag

(
sTr + a

sTr + µa
e−sTr

)
RT (−s) diag

(
1
cls

)
R(s)

At s = jω, the set of eigenvalues is identical to that of

L(jω) = diag

(
µMTr

q∗
r

)
·

diag

(
e−jωTr

jωTr
· jωTr + a

jωTr + µa

)
R̂T (−jω)R̂(jω)

where

R̂(jω) = diag

(√
1
cl

)
R(jω)diag

(√
x∗

r

M

)
(25)

Using (25) and (11), the usual argument gives

ρ
(
R̂T (−jω)R̂(jω)

)
≤ 1

The lemma from [23] then implies that all eigenvalues of

L(jω) are in the convex hull:

co

{
0
⋃ {

MTr

q∗
r

· Λ(jωTr)
}
, r = 1, . . . , N,

}
(26)

where

Λ(jωTr) := µ · e
−jωTr

jωTr
· jωTr + a

jωTr + µa

Note that Λ(·) is independent of r. By the generalized Nyquist

stability criterion [7], the system is stable if the set in (26) does

not encircle −1.

Step 2: Let ωr be the critical frequency at which the phase

∠Λ(jωrTr) is −π for sources r:

ωrTr − ∠ jωTr + a

jωTr + µa
=

π

2
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Without loss of generality, we can assume T1 ≥ Tr for all r.

Then ω1 ≤ ωr for all r since ωrTr = ω1T1 for all r. Thus,

at ω ≤ ω1, the convex hull of (26) cannot encircle −1. At

ω ≥ ω1, the set in (26) does not encircle −1 if, for all r,

MTr

q∗
r

· |Λ(jωTr)| < 1 (27)

We now show that this is implied by the conditions in the

theorem.

For ω ≥ ω1, we have ωTr ≥ ω1Tr ≥ ω1T1/k0. Notice that

the magnitude

|Λ(jωTr)| =
µ

ωTr

√
(ωTr)2 + a2

(ωTr)2 + µ2a2

is a strictly decreasing function of ωTr. Hence for all r

|Λ(jωTr)| ≤
∣∣∣∣Λ

(
jω1

T1

k0

)∣∣∣∣

=
µk0

ω1T1

√
(ω1T1)2 + (ak0)2

(ω1T1)2 + µ2(ak0)2

≤ µk0

φ

√
φ2 + (ak0)2

φ2 + µ2(ak0)2

The last inequality follows from Lemma 5 below which

implies that, for all r,

ωrTr ≥ π

2
− tan−1 1 − µ

2
√
µ

= φ

where φ is defined in the theorem.

The condition (24) in the theorem then guarantees that (27)

holds. Since x∗
rq

∗
r = α, the conditions (23) and (24) are

equivalent. Hence the proof is complete with the following

lemma.

Lemma 5: Let

Λ(jωTr) = µ · e
−jωTr

jωTr
· jωTr + a

jωTr + µa

where 0 < µ < 1 and a > 0. Then, for all r, ω ≥ 0,

∠Λ(jωTr) ≥ −ωTr − π

2
− tan−1 1 − µ

2
√
µ

Proof: Let

hr(ω) := ∠ jωTr + a

jωTr + µa

= tan−1
(
ωTr

a

)
− tan−1

(
ωTr

µa

)

Then

h′
r(ω) =

(1 − µ)((ωTr)
2 − a2µ)a

((ωTr)
2 + a2)((ωTr)

2 + µ2a2)

Since µ ∈ (0, 1), it can be checked that the solution, ω∗
r =

a
√

µ

Tr
, of h′(ω) = 0 minimizes the phase hr(ω). Hence

∠hr(ω) ≥ tan−1 √
µ − tan−1 1

√
µ

=: ψ

which is independent of r. Moreover

tanψ =

√
µ − 1√

µ

2
= −1 − µ

2
√
µ

Therefore

∠Λ(jωTr) = −ωTr − π

2
+ ∠hr(ω)

≥ −ωrTr − π

2
− tan−1 1 − µ

2
√
µ

and hence the lemma follows.

We remark on the implications of Theorem 4. In the case

of homogeneous round trip time, i.e. k0 = 1, the stability (24)

becomes

M max
r

Tr

q∗
r

<
θ

µ

√
θ2 + µ2a2

θ2 + a2 (28)

M is a bound on the number of bottleneck links in the path of

a source. It is typically much less than 10. q∗
r

Tr
is the ratio of

round trip queueing delay and entire round trip time ; both

quantities are available at a Vegas source. For the current

network, this ratio seems to be small (less than 5) for long

delay routes. Hence, a choice of design parameters a and µ that

guarantees that the right-hand side of the stability condition

exceeds 100 seems safe. From Fig. 1, this requires small a

Fig. 1. The upper limit of MTr
q∗

r
.

and µ (e.g., a = 0.01 and µ = 0.001). Recall the definition

of (20) and (21): kappar(t) = (Tr(t)/qr(t))/a and ηr(t) =
µa(xr(t)Tr(t)/w). A small a implies a large kappar(t),
which means that the stabilized Vegas reacts more aggressively

to price change q̇r(t). A small µa implies a small η, which

means that the slope of (18) around equilibrium is small,

yielding a smoother overall gain. For the heterogeneous round-

trip case, i.e. k0 > 1, a smaller a than in the homogeneous is

required to guarantee stability.
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Example 2: Single link with homogeneous sources (c, d,N)
For a direct comparison with the original Vegas stability, we

consider the same setup as in Example 1: a single link of

capacity c shared by N homogeneous sources with round trip

propagation delay d. For this case, the sufficient condition of

Theorem 4 with (M = 1 and k0 = 1) is simplified to

q∗
r/Tr >

µ

φ

√
φ2 + a2

φ2 + µ2a2 for all r

Since Tr = d+ q∗
r and q∗

r = α/x∗
r = αN/c by symmetry, this

condition is equivalent to

cd <

(
φ

µ

√
φ2 + µ2a2

φ2 + a2 − 1

)
αN (29)

Hence, like the original Vegas, it also has a larger stability

region with larger queue length α or number N of sources.

Furthermore, given α and N , stabilized Vegas can choose a

small (a > 0, µ ∈ (0, 1)) such that the right-hand side of

(29) can be larger than that of (14) for stability of the original

Vegas. This is illustrated in Fig. 2 where the stability regions

in (14) and (29), for Vegas and stabilized Vegas respectively,

are plotted, with (a, µ) = (0.5, 0.015) and α = 20 packets,

N = 100 sources.
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Fig. 2. Stability regions of Examples 1 and 2: single-link shared by
homogeneous sources

The stability condition is only sufficient. Indeed, less con-

servative values can be used for a and µ. For instance, the

Nyquist plots of (MTr/q
∗
r ) · Λ(jωTr) for MTr/q

∗
r = 100 are

shown in Fig. 3, for the scenario in Example 2 with a = 0.1
and µ ∈ [0.001, 0.015]. Even though these a and µ values do

not satisfy the stability condition of Theorem 4, the network

is indeed stable, as shown by the Nyquist plots.
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Fig. 3. Nyquist Stability of Λ(jωTr) for MTr
q∗

r
= 100 with a = 0.1, µ =

[0.001 : 0.015]

V. DISCUSSION: IMPLEMENTATION AND DEPLOYMENT

The most attractive feature of TCP Vegas is its suitability

for high speed large delay networks. In this regime, window

size is large and TCP Reno or its variants must maintain an

extremely small loss probability (e.g., on the order 10−10) in

equilibrium. Using such a small probability reliably is a great

challenge.

Vegas on the other hand has two advantages, both stem from

the use of delay as a measure of congestion. First, its implicit

link algorithm has a built-in scaling with respect to network

capacity, which together with stabilized source algorithm, can

potentially scale to much larger bandwidth delay product.

Second, each measurement of delay by a source provides a

much finer-grained estimate of congestion than the binary-

valued loss or marking does. As capacity scales up, it is easy

to scale at the source to maintain the strength of the congestion

signal (delay) by scaling up the α parameter.

The problem that delay may be excessive in the low band-

width regime in order for Vegas to reach equilibrium is much

less severe in the high bandwidth regime. Moreover, problem

with error in propagation delay estimation and persistent

congestion [19], [17] is also eased with high capacity, as

buffers empty more frequently. Though there are other issues

with using delay for congestion control, it seems that unless

ECN is widely deployed, these problems are less fundamental

than the intrinsic difficulty of reliably using an extremely small

loss probability for control. Further study is required to resolve

these issues.

We now describe a viable strategy for stabilized Vegas to
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work with incremental deployment of new AQM and ECN.

The link algorithm in Vegas computes the queueing delay as

follows:

ṗl(t) =
1
cl

(yl(t) − cl) (30)

The division by cl is what gives Vegas the built-in scalability

with network capacity (see proofs of Theorems 1 and 4).

As discussed in [17], Vegas exploits the buffer process to

automatically compute congestion prices, at the expense of

having to maintain a non-zero queueing delay (these are

Lagrange multipliers for the utility maximization problem

Vegas is implicitly solving).

The link algorithm in the scalable scheme of [21], [22] uses

the same expression as in (30) except that instead of real link

capacity cl, a virtual link capacity that is slightly smaller (say,

95% of cl) is used to explicitly compute the price pl(t). The

advantage of using a virtual queue is that while the prices

still converge to their non-zero values, the real queue will be

cleared in equilibrium. Since queues are now empty, queueing

delay can no longer serve as a feedback signal. ECN marking

must be used to explicitly feedback the prices, e.g., using REM

[2], [21], [22].

Imagine now a network with both types of links, one does

not use ECN nor perform AQM to clear their queues and one

does. The first type maintains a queue but does not mark,

while the second type has no queueing delay but sends a

stream of marks to the sources. A source observes two types of

feedback signals: aggregate queueing delay from type 1 links

and aggregate prices from type 2 links (after REM estimation).

Not only do these two signals not interfere with each other,

their sum yields precisely the total price in the path of the

source! Hence, by observing both signals and summing them,

the source automatically obtains the necessary information for

its control, without having to know the type or number of

links in its path. As more and more links convert to AQM

with ECN, the source algorithm needs no upgrade. The only

effect is that queueing delay steadily decreases.

VI. SIMULATION RESULTS

We have conducted an extensive set of ns-2 simulations to

study the behavior of Vegas and stabilized Vegas algorithms

with different number of sources, homogeneous and heteroge-

neous sources, single and multiple bottleneck links, in dynamic

scenarios, with two-way traffic, and with mice traffic. Due to

space limit, we will report only the simplest set of results

with a single bottleneck link, that validates the theory in the

previous sections and illustrates the suitability of stabilized

Vegas in high speed large delay networks where window size,

in packets, is large. Other simulation results are included in

the journal version of the paper.

We simulate the scenarios of Examples 1 and 2 with a

single bottleneck link shared by N homogeneous sources. The

simulations use the usual dumb-bell topology with N sources

connected to N destinations via two routers. The access links

between sources (or destinations) and their router are non-

bottlenecks with zero latency, and the link between the two

routers is the only bottleneck link with capacity c Gbps (or

pkts/ms) with a fixed packet size of 1 KBytes. The latency

between the routers is d/2 ms. Routers do FIFO with Droptail

and queue capacity is set to 40K packets so the possibility

of packet loss is negligible. All sources start to send packet

simultaneously.

We fix α = 20 packets and N = 100 flows, and vary c and

d. We present three sets of simulations, with the three different

(c, d)s on the region of Fig. 2, as shown in Fig. 4.

2000
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1201000.8 (100)(c)

120108.0 (1000)(b)

30100.8 (100)(a)

expected

window size

[pkts]

propagation

delay

d [ms]

capacity

c [Gbps]

(pkts/ms)

flows001Npkts,20

R1S1 D1
c, d

R2

N

cd

Fig. 4. Network topology with single bottleneck and homogeneous sources :
(α, N) = (20 pkts, 100 flows). For stabilized Vegas, (a, µ) = (0.5, 0.015).

Simulation (a) is for small capacity and delay in the

intersection of both stability regions. Simulation (b) scales up

the capacity by 10 times, and simulation (c) scales up the

delay used in (a) by 10 times. Both (b) and (c) are outside the

stability region of the original Vegas, but still in the stability

region of stabilized Vegas. For both the original Vegas and

Stabilized Vegas algorithms, we set the target queue length

of each flow α = 20 pkts and N = 100 flows. The last two

columns of Fig. 4 show the equilibrium queue length and the

equilibrium window size calculated from [17].

The simulation results are shown in Fig. 5. The first plot

of each case shows the total queue length buffered in the
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bottleneck link. The second plots are the average window size

averaged over the N sources. As expected, the original Vegas
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(b) c = 8 Gbps (1000 pkts/ms) and d = 10 ms
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Fig. 5. The queue length and the average window size near equilibrium
(α = 20 pkts, N = 100).

exhibits instability in cases (b) and (c), where the stabilized

Vegas remains stable.

In order to see the performance of the stabilized Vegas for

high speed large delay networks where window size can be

large, we use a much smaller number of flows, N = 3, with

(c, d) = (3.2 Gbps, 100 ms). We also set α = 400 packets , so

that about 3% of propagation delay is allowed as the queuing

delay. Here the equilibrium window size calculated from [17]

is about W ∗ = 13, 700 packets per flow. As shown in Fig.

6, the stabilized Vegas can almost achieve the equilibrium

window size in less than 10 ms, while the linear increment

of the original Vegas is too far slow. The stabilized Vegas also

has good steady-state.
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Fig. 6. Fast convergence for high speed network c = 3.2 Gbps, d = 100
ms and (α, N) = (400 pkts, 3).

VII. CONCLUSION

In this paper, we have presented a detailed analysis of

Vegas stability in a general multi-link multi-source setup with

heterogeneous forward and backward delays. We have derived

a stability condition that suggests that Vegas can be unstable in

the presence of delay. We have proposed a small modification

that stabilizes it in the presence of large network delays.

Vegas is particularly attractive for high speed network

because of its built-in scalability with network capacity. In the

high bandwidth regime, the potential problem with persistent

congestion of Vegas is alleviated. Moreover, it avoids the

intrinsic difficulty of having to control based on extremely

small loss probability, as Reno must. Despite these advantages,

there are issues associated with delay-based congestion control

that must be resolved, especially incremental deployment. We

have described one aspect of this: how Vegas source can work

gracefully as the network migrates to an ECN-based AQM.
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