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Abstract— In this paper, we present an analytical TCP model
that takes into account of several issues that were ignored in the
other existing models (such as those in [15], [19]), i.e., (i) the
congestion window is not gradually decreased at the rate of w2p

2 ,
but suddenly halved upon receipt of congestion indication and (ii)
the congestion window is halved at most once during one round-
trip time (RTT). We also include the delayed ACK option in the
model. With the use of state feedback control theory, we then
design, based on the enhanced TCP model, an AQM controller
to stabilize the queue length at routers. The performance of the
new controller is shown, via ns-2 simulation to outperform several
other schemes under a variety of network scenarios and traffic
loads, in terms of fluctuation in the queue length, link utilization,
and packet loss ratio.

Index Terms— AQM, state feedback control, TCP/IP, and ECN.

I. INTRODUCTION

A central tenet of the current Internet architecture is that
congestion control is performed mainly by TCP at end hosts.
However, as new applications (which may not deploy TCP
for congestion control), e.g. continuous media applications,
become widely deployed on the Internet, it becomes difficult,
if not impossible, to exclusively rely on end hosts to per-
form end-to-end congestion control. It has been agreed upon
that the network itself must now participate in congestion
control and resource management. To this end, the Internet
Engineering Task Force (IETF) is advocating deployment of
explicit congestion notification (ECN) [22] and active queue
management mechanisms (AQM) at routers as a means to
congestion control. By AQM, we mean core routers inside the
network measure congestion level on their links and explicitly
signal traffic sources by selectively marking/dropping packets,
before congestion actually takes place. Traffic sources then
response to the congestion signal by adjusting their control
window sizes (or equivalently sending rates).

Several active queue management mechanisms have been
proposed, e.g., random drop [11], early packet discard [18],
early random drop [14], random early detection (RED) [8] and
its variations (FRED [17], stabilized RED (SRED) [20], and
balanced RED (BRED) [1]), BLUE [7], REM [2], PI controller
[12], and AVQ [16], among which RED has perhaps received
the most attention. RED has been shown to successfully
prevent global synchronization , reduce packet loss ratios, and
minimize the bias against bursty sources. The major pitfalls of
RED are, however, that its performance is sensitive to the level

of network load and the parameter settings, that the queue
length usually oscillates significantly [3], and that it cannot
achieve simultaneously high link utilization and low packet
losses (due to the fact that RED directly couples the packet
dropping probability with the queue length) [7], [2], [16].

In the past few years, significant research efforts have
been made to study/improve the performance of RED (or, in
general, AQM). These efforts can be roughly classified into
three categories. In the first category, approaches are devised
to adaptively, on-line adjust RED parameters according to the
condition of network congestion [1], [17], [20], [7]. Most of
the approaches proposed in this category are heuristic-based
and validated through simulation. In the second category,
interactive behaviors of TCP connections and AQM controllers
are characterized as an gradient optimization problem [15],
[16], [21], with the objective of maximizing the utility of
the network. The optimization based approaches proposed in
this category primarily focus on the steady state equilibrium,
rather than the transient behavior, of the queue and TCP.
The third category envisions a network that consists of TCP
connections and AQM routers as a dynamic feedback control
system, in which AQM routers act as controllers and TCP
traffic sources act as plants [15], [19]. Several analytical
models are proposed to approximate the dynamic additive
increase and multiplicative decrease (AIMD) behaviors of TCP
in conjunction with AQM [15], [19]. Automatic control theory
is then used to analyze (with respect to controllability and
stability) and design AQM controllers. Our proposed work
falls in the third category.

The analytical models proposed in the third category provide
new insights on designing better AQM controllers, choosing
appropriate parameters, and detecting problematic parameter
settings. All models try to describe the main dynamics of TCP
in the congestion avoidance phase. Succinctly, in the TCP
congestion avoidance phase, a TCP connection uses AIMD
algorithm to adjust its congestion window size cwnd. That
is, for each positive acknowledgment received, it increases
its cwnd by 1

cwnd , and in the case of congestion indication
(i.e., receipt of three duplicate acknowledgments or ECN), it
reduces its cwnd by half to cwnd

2 [13]. These analytical models
characterize the AIMD behavior of TCP as follows [15]: as
each positive acknowledgment increases cwnd by 1/cwnd
and each congestion indication reduces the cwnd by half to
cwnd

2 , the rate at which the expected congestion window size
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changes is expressed as 1−p
τ − w2p

2τ , where τ is the round-trip
time (RTT) of a TCP connection, w is the current congestion
window size, and p is the dropping or marking probability.
The changing rate is then taken as the TCP dynamic behavior
for analysis and design.

Although the controllers designed under the aforementioned
models are shown, via simulation, to perform well, two effects
are not considered in these models. First, the congestion
window is not gradually decreased at the rate of w2p

2 , but
suddenly halved upon receipt of congestion indication. Second,
the congestion window is halved at most once during one RTT.
In this paper, we present an enhanced model that takes into
account of these effects as well as the TCP option of delay
acknowledgment. We show that the new model characterizes
the TCP dynamics more realistically and that under the new
model cwnd decreases faster. We then analyze the stability
of its linearized model and design, with the use of state
feedback control theory, a controller to stabilize the queue
at an AQM router. The resulting AQM controller is called the
state feedback controller (SFC). All the algorithm implemen-
tation and parameter setting issues are carefully considered
and validated through theoretical reasoning. We also evaluate
via ns-2 simulation the performance of the new controller
and compare it against other existing schemes. The simulation
results show that SFC outperforms other schemes in terms of
fluctuation in the queue length, link utilization, and packet
loss ratio. In particular, SFC can reduce packet loss by more
than 50% as compared to other schemes and yet achieve full
link utilization. As compared to PI controller proposed in [12],
SFC achieves 10% more link utilization.

The rest of the paper is organized as follows. In Section II,
we present an enhanced TCP model that considers effects
aforementioned and ignored in the previous models. In Sec-
tion III, we linearize our model and analyze its local stability.
In Section IV, we design a state feedback controller based on
our linearized model. In Section V, we discuss through theo-
retical reasoning, the algorithm implementation and parameter
setting issues. Following that, we summarize and categorize
related work in Section VI and present simulation results in
Section VII. The paper concludes in Section VIII.

II. AN ENHANCED TCP MODEL

In this section, we take into account of (i) effects that were
previously ignored in other analytical models and (ii) the TCP
option of delay acknowledgment, and derive a new model
to characterize the expected transient behavior of the TCP
congestion window in the congestion avoidance phase. We
also compare the new model against existing models.

Similar to the existing models [15], [19], we assume that
(A1) TCP connections operate in the congestion avoidance
phase1; (A2) the change in the packet dropping/marking
probability is insignificant in one round trip time, τ ; and (A3)
packets are marked independently. While the other models take
the expected rate at which cwnd changes over the interval be-
tween two acknowledgments as the approximate cwnd change

1It has been observed in [5] that the majority of Internet traffic is
still dominated by long-lived TCP connections and most long-lived TCP
connections operate in the congestion avoidance phase most of the time.

rate, we calculate the expected cwnd change, E(∆w), over
one RTT τ , and use E(∆w)

τ as the cwnd change rate. As will
be clearer below, with this subtle change we will be able to
figure in effects ignored in the other models.

We model the TCP behavior in the congestion avoidance
phase in terms of “cycles.” An old cycle ends and a new
cycle begins when all data packets in the previous conges-
tion window are acknowledged. In the time axis, a cycle
takes approximately one RTT, τ . Let the size of the current
congestion window and the size of the congestion window
one RTT before be denoted, respectively, as w and w′. By
definition, totally w′ packets are acknowledged in the current
cycle. Let the number of packets that are acknowledged by
a received acknowledgment (ACK) be denoted as b. If each
ACK acknowledges only one packet, b = 1. On the other hand,
if the delayed ACK option is used (i.e., one ACK is sent for
every two data packets received), b = 2.

If the ECN bit of the kth acknowledgment is marked, the
current congestion window size, cwnd = w + k−1

bw , will be
halved. As the congestion window is halved at most once in a
round trip time, after one cycle, the change in the congestion
window size (in unit of MSS) is 1

b − w
2 − k−1

2bw . Let p denote
the probability that the ECN bit of a packet is marked in the
current cycle. Then, under assumptions (A2) and (A3), the
probability that the kth data packet is the first with the ECN
bit marked in the current congestion window (so that the kth
acknowledgment carry the ECN indication) is (1 − p)k−1p. If
no ECN bit is marked or three duplicate ACKs received, cwnd
will be increased by w′

bw , and the corresponding probability is
(1 − p)w′

. By the end of each cycle, the expected change in
the congestion window size can be expressed as

E(∆w) =
w

′
∑

k=1

(1 − p)k−1p

(
2w

′
− k + 1
2bw

− w

2

)
+
w

′
(1 − p)w

′

bw

= −1 − (1 − p)w
′
w

′
p− (1 − p)w

′
− p+ p(1 − p)w

′

2bwp

−w
2

[
1 − (1 − p)w

′ ]
+
w

′

bw
. (1)

When p is small, i.e. wp � 1, we can consider first-order items
of p while ignoring high-order items and simplify Eq. (1) to

E(∆w) ≈ −w
′
(w

′
− 1)

2bw
p− ww

′

2
p+

w
′

bw

=
w

′

bw
+ (

w
′

2bw
− w

′2

2bw
)p− ww

′

2
p. (2)

The rate at which cwnd changes can then be approximated as

dE(w)
dt

≈ E(∆w)
τ

. (3)

Notice that w′ = w(t − τ) and the packet dropping
probability that a TCP connection perceives also incurs a time
delay τ , i.e., p = p(t − τ). Substituting w′ and p(t − τ) into
Eq. (3), we have

dE(w)
dt

=
w(t− τ)
bτw(t)

+
[
w(t− τ)
2bτw(t)

− w2(t− τ)
2bτw(t)

]
p(t− τ)

−w(t)w(t− τ)
2τ

p(t− τ). (4)
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Comparison against other models: Now we compare the
newly derived model with the other analytical models. Misra’s
model [19] (which is scaled by b to take into account of the
delayed ACK option) is given below:

dE(w)
dt

=
1
bτ

− w(t)w(t− τ)
2τ

p(t− τ). (5)

Comparing Eqs. (4) and (5), we can see that when w(t−τ) ≈
w(t) and w(t − τ) > 1 (which is always true, as we assume
TCP connections operate in the congestion avoidance phase
and hence w(t − τ) ≥ 3.),

w(t − τ)
2bτw(t)

− w2(t − τ)
2bτw(t)

< 0. (6)

Eq. (6) implies the second term in Eq. (4) is negative, and
hence the congestion window size decreases faster in our
model than in Misra’s model.

Let the sending rate be x(t) = w(t)
τ . Then Eq. (4) can be

re-written as

dx

dt
=

x(t− τ)
bτ2x(t)

+
[
x(t− τ)
2bτ2x(t)

− x2(t− τ)
2bτx(t)

]
p(t− τ)

−x(t)x(t− τ)
2

p(t− τ). (7)

Kelly’s model [15] (which is again scaled by b to take into
account of the delayed ACK option) is given below:

dx

dt
=
x(t− τ)
bτ2x(t)

− x(t− τ)
bτ2x(t)

p(t− τ)− x(t)x(t− τ)
2

·p(t− τ). (8)

Comparing Eqs. (7) and (8), we can see when x(t − τ) > 3
τ ,

we have
x2(t− τ)
2bτx(t)

− x(t− τ)
2bτ2x(t)

>
x(t− τ)
bτ2x(t)

, (9)

i.e., the second term in Eq. (7) is less than that in Eq. (8). By
assumption (A1), the congestion window size should always
be greater than 3 MSS, and hence x(t− τ) > 3

τ always holds.
As a result, the sending rate decreases faster in our model than
in Kelly’s model.

This fact that the congestion window size decreases faster
cautions us for the importance of designing appropriate AQM
controllers as the impact of the packet dropping/marking
probability on the congestion window change is larger than
the other models expect.

III. ANALYSIS OF INTERACTION BETWEEN TCP AND

AQM
In this section, we consider a system in which N homo-

geneous TCP connections traverse a single bottleneck link
with bandwidth C. By homogeneous, we mean all the TCP
connections incur roughly the same round trip time and share
the same bottleneck link, although they do not necessarily
traverse the same end-to-end path. Let the queue length on
the bottleneck link be denoted q and the congestion window
size of each TCP connection w. The dynamic system can be
described by





·
q � g(w(t), q) = N

τ
w − C,

·
w � f(w(t), w(t− τ), p) = w(t−τ)

bτw(t) − w(t)w(t−τ)
2τ

p(t− τ)
+

[
w(t−τ)
2bτw(t) − w2(t−τ)

2bτw(t)

]
p(t− τ).

(10)
The first differential equation (Eq. (10)) states that the queue
length is an integral of the difference between the packet

arrival rate and the link capacity. The second differential
equation (Eq. ((10)) describes the dynamic behavior of the
TCP congestion window that is developed in Section II.

As the system model (Eq. (10)) is nonlinear with a time
delay, it is impossible to analyze it analytically. Hence, we will
first approximate the system model with its small-deviation
linearized model around an operating point, say (w0, p0), to
analyze its local stability. We assume that τ is constant. Let
δw � w − w0 and δp � p − p0, in which δw and δp
are, respectively, deviations of the congestion window and
the dropping probability from the operating point. By setting
g(w(t), q) = 0 and f(w(t), w(t − τ), p) = 0, we have

w0 =
τC

N
,

p0 =
2

bw2
0 + w0 − 1

=
2N2

bτ2C2 + τCN −N2 . (11)

Also,
∂g

∂w
=

N

τ
,

∂f

∂w
= −p0 + 2bw0p0

2bτ
,

∂f

∂p
=

1
2bτ

− w0

2bτ
− w2

0

2τ
= − 1

bτp0
.

Hence, the equations that characterize the system dynamics
around the operating point are

δ
·
q =

∂g

∂w
δw =

N

τ
δw,

δ
·
w =

∂f

∂w
δw +

∂f

∂p
δp

= −p0 + 2bw0p0
2bτ

δw − 1
bτp0

δp(t− τ). (12)

For the system model to be meaningful around the operating
point, we require that w0 ≥ 0 and 0 ≤ p0 ≤ 1. As τ > 0,
C > 0 and N > 0, w0 is always greater than 0. To satisfy
0 ≤ p0 ≤ 1, we should have 0 ≤ N < 1+

√
12b+1
6 τC. All

our analysis and design will be restricted to the parameter
region mentioned above, because otherwise the system has no
equilibrium and can not be stabilized according to the linear
model. The transfer function of the system is

T (s) =
W (s)
P (s)

= −
1

bτp0

s+ p0+2bw0p0
2bτ

e−τs � G(s)e−τs, (13)

i.e., T (s) is a pure-delay system with a non-delay part G(s).
As G(s) has a pole at −p0+2bw0p0

2bτ that lies on the left half of
the complex plane, G(s) is stable.

In summary, the system in which N homogeneous TCP
connections traverse a bottleneck link with capacity C can be
approximated by the following linear differential equation:






·
δq = N

τ
δw,

·
δw = − p0+2bw0p0

2bτ
δw − 1

bτp0
δp(t− τ).

(14)

In the matrix form, the system can be represented as
·
x =

Ax+Dδp(t− τ), where x =
[
x1 x2

]T =
[
δq δw

]T
,

A =
[

0 N
τ

0 −p0+2bw0p0
2bτ

]
and D =

[
0 − 1

bτp0

]T
. Since

[
D AD

]
is full ranked, the system is controllable. Hence

by using the proper control law, we can take system’s states,
i.e. the queue length at the bottleneck link and the congestion
window size, cwnd, of TCP connections, to some desirable
equilibrium point.
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AQM Controller x=Ax+Dp(t−  )τp x

Fig. 1. The system diagram.

IV. STATE FEEDBACK CONTROLLED AQM

In this section, we design, based on the state feedback
control theory, an AQM controller under the linearized model
(formulated in Section III), and discuss how tunable param-
eters should be set to stabilize the system, i.e. to make δq
and δw as close to zero as possible. The reasons for using
state feedback control are: (i) it is desirable to remove the
operation of averaging the queue length (and using it as a
congestion index) in several AQM schemes, as it has been
believed that this operation brings in more sluggish behaviors
to a delay system; (ii) since all system states in state feedback
control can be readily obtained or estimated, a state feedback
controller can be easily implemented and can quickly respond
to system dynamics.

Fig. 1 shows the block diagram of the feedback control
system that characterize the interaction between TCP and
AQM. The controllable plant is the linearized TCP model and
the AQM controller marks the arrived packets with probability
p (which is a function of system states) and is the entity
to be designed. With the use of state feedback control, we
can express the marking/dropping probability as a linear
combination of system’s states, i.e. x1 = δq and x2 = δw.
Specifically, let p (t) = K · x (t). We have

·
x = Ax+Dp(t− τ) = Ax+D ·K · x(t− τ),

=
[

0 N
τ

0 −1−2bw0
2bτ

p0

]
x+

[
0 0

−k1
bτp0

−k2
bτp0

]
x(t− τ)(15)

After Laplace transform, the characteristic polynomial, D(s),
of the system can be expressed as:

D(s) = det(sI −A−D ·Ke−sτ )

=
p0 (1 + 2bw0)

2bτ

[
2Nk1 + 2k2τs
(1 + 2bw0) p20τ

]
e−sτ

+
p0 (1 + 2bw0)

2bτ

[
1 +

2bτ
(1 + 2bw0) p0

s

]
s. (16)

Stable region of k2: To make the feedback control
system stable, we should choose parameters k1 and k2 such
that the roots of D(s) all lie in the left half complex plane.
Here we leverage the results reported in [24]: the sufficient
and necessary condition for the system to be stable is that
k2 fulfills the following inequality (after the value of k2 is
determined, k1 is chosen accordingly; we will elaborate on
how to choose k1 below):

0 ≤ k2 ≤ bp0

√

θ2 +
(1 + 2bw0)

2
p2
0

4b2

=
2bN2

bτ2C2 + τCN − N2

√

θ2 +
(1 + 2bw0)

2
p2
0

4b2
,
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Fig. 2. The bound of k2.

in which θ is solution to tan (θ) = − b(bτ2C2+τCN−N2)
N2(1+2b τC

N ) θ in

the interval of
(

π
2 , π

)
.

In summary, let α = τC
N . The sufficient and neces-

sary condition for system stabilization is that 0 ≤ k2 ≤
2b

α2b+α−1

√
θ2 + 1

b2

(
2ab+1

α2b+α−1

)2
= K2 max in which θ is a

solution to tan (θ) = −b bα2+α−1
2αb+1 θ in the interval of

(
π
2 , π

)
.

The bound of k2 as a function of N
τC in the case of b = 1

and b = 2 is depicted in Fig. 2. From the figure, we can see
that the larger the value of N

τC , the larger the bound of k2.
This implies when the number, N , of connections gets larger
or the round trip time, τ , gets smaller, we can choose a larger
value of k2. Alternatively, if we choose the value of k2 for
a minimal number of connections, say Nmin and a maximal
value of τ , say τmax, then for all N ≥ Nmin and τ ≤ τmax,
the system is still stable, as N

τC ≥ Nmin

τmaxC . Also, as shown in
Fig. 2, when the delayed ACK option is used, i.e. b = 2, the
stable region of k2 is smaller, so we should choose a smaller
value of k2.

Stable region of k1: After the value of k2 is determined,
the region of k1 to stabilize the system can be determined by
finding the roots of the following equation [24]:

k2 +
(2αb + 1) cos(z)
(bα2 + α − 1)2

− bz sin(z)
(bα2 + α − 1)

= 0. (17)

Specifically, let the non-negative roots of Eq. (17) be ar-
ranged in the increasing order of magnitude and denoted as
zi, i = 0, 1, 2, . . . (of which z0 = 0). Next we compute
ai = a(zi), i = 0, 1, 2, . . . using the following equation:

a(z) =
( √

4ab + 2√
N (ba2 + a − 1)

)2

z

[
sin(z) +

b
(
ba2 + a − 1

)

(1 + 2ab)
cos(z)

]
.

(18)
The lower and upper bound of k1 will be 0 < k1 <
mini=1,3,5,... ai. In fact, we do not need to find all the roots of
Eq. (17). After finding z2j+1 that makes cos(z2j+1) > 0, the
algorithms can stop and proceeds to find the bound for k1. In
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Fig. 4. The Nyquist diagram of the system of interest.

what follows, we give an example to illustrate how to choose
these parameters.

Example 1: Given the network parameters: C = 10Mbps =
1250 packets/second with the average packet size 1000 bytes,
Nmin = 300, τmax = 0.6sec, and b = 2 (i.e., the delayed
ACK option is used). As mentioned above, only when N <
1+

√
12b+1
6 τC = 750, the system equilibrium is meaningful.

Also, Nmin

τmaxC = 0.4. As shown in Fig. 2, if we choose 0 < k2 <
0.4, the system will be stable for N ≥ Nmin and τ ≥ τmax.
The bound of k1 as a function of k2 in the cases of b = 1 and
b = 2 is shown in Fig. 3. Also as shown in Fig. 3, when the
delayed ACK option is used, i.e. b = 2, we should choose a
smaller value of k1. Given all the above criteria, we can choose
k2 = 0.2 and then k1 = 0.0005. The open-loop Nyquist plot
of the system is shown in Fig. 4. As the Nyquist plot does not
encircle point (-1, 0), the closed-loop system is stable.

/* Called upon arrival of a new packet */
/* Qlim is the buffer size at the router, C0 is the capacity of the
* outgoing link, q0 is the desired queue length, and k1 and a = k2

C
* are parameters chosen to stabilize the queue length */
1. if (q ≥ Qlim) {
2. Drop the packet;
3. Return;
4. }
5. R ← R estimate();
6. δq ← q − q0;
7. p ← k1 · δq + a · (R− C0);
8. if (p < 0)
9. p = 0;
10. else if (p > 1)
11. p = 1;
12. drop ← Random uniform(0,1);
13. if (drop > p) {
14. Put the packet into the queue;
15. } else if (ECN is enabled) {
16. Mark the ECN bit of the packet;
17. Put the packet into the queue;
18. } else
19. Drop the packet;
20. Return;

Fig. 5. Enqueue Procedure.

V. ALGORITHM IMPLEMENTATION AND PARAMETER

SETTING

The algorithm of the AQM controller is outlined in Fig. 5.
Lines 1–4 determine if the queue length already exceeds the
limit. If so, the incoming packet is discarded. Lines 5–11 cal-
culate the packet marking/dropping probability, p, according
to the current system states, and reset the probability to 0 or 1,
if the calculated value exceeds region [0, 1]. In Lines 12–19,
the packet is marked/dropped with probability p.

Line 7 in the algorithm is worthy of further discussion, as
it is related to the issues of how to practically implement the
AQM controller and how to measure/gather all the parameters
such as k1 and k2. One key objective of choosing these
parameters is that we should ensure that the controller is robust
to a wide variety of network condition changes. The value of
k1 can be determined as described in Section IV, after the
value of k2 is determined. On the other hand, to practically
implement the algorithm, we replace k2δw with a(R − C0).
The value of δw cannot be directly obtained at the router,
but can be estimated by τ

N δ
·
q, where δ

·
q is the difference

between the incoming rate and the link capacity, i.e. R − C0.
The remaining problem is how to determine the values of τ
and N . As mentioned in Section IV, the equilibrium state
of the system is meaningful only when N < 1+

√
12b+1
6 τC.

Hence, we can use Nmax = 1+
√

12b+1
6 τC (which is 0.77τC

and τC, respectively, when b is 1 and 2.). Thus, in the case of
b = 2, we have | τ

Nmax
δ

·
q| = | 1

C δ
·
q| ≤ | τ

N δ
·
q| = |δw|. Because

|k2
C δ

·
q| ≤ |k2δw|, the net effect of setting a = k2

C is that we
choose a smaller value of k2 than that determined according
to the method described above, and hence the system is still
stable.

p = k1 · δq + a · (R − C0) implies that the packet
dropping/marking probability in SFC consists of two parts: the
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first part is proportional to the difference between the current
queue length and the target queue length; and the second
part is proportional to the ratio of the difference between
the incoming rate and the link capacity to the link capacity.
Continuing Example 1, we discuss in the following example
how the parameters are practically chosen:

Example 2: As shown in Fig. 3, for the nominal value of
k2 = 0.2 obtained in Example. 1, the appropriate value of
k1 ranges from 0 to 0.0007. As described above, we estimate
the number, N , of connections to be Nmax, the net effect of
which is that we actually use a smaller value of k2 than the
chosen value of k2. Consequently, we should choose the value
of k1 so that the system remains stable given a smaller value
of k2. From Fig. 3, we can see that k1 = 0.0005 is in the
stable region for all values of k2 ∈ [0, 0.2] and hence is a safe
choice.

VI. RELATED WORK

As discussed in Section I, several AQM schemes have
been proposed, e.g., FRED [17], balanced RED (BRED) [1],
BLUE [7], stabilized RED (SRED) [20], random exponential
marking (REM) [2], PI controller [12], and AVQ [16]. These
schemes differ in (1) the performance objectives (in addition
to that of notifying end hosts of incipient congestion by
dropping/marking packets); (2) the parameters used as an
indicator of congestion; and (3) the policies used to detect
(incipient) congestion and to drop/mark packets. In what
follows, we summarize these schemes, and give in Table I
a taxonomy with respect to the above three aspects.

Schemes that aim to achieve fairness: In FRED, a
router monitors, not only the global average queue length,
but also the average queue length, qleni, of each individual
active connection i. Moreover, two minimum and maximum
thresholds are defined for the per-flow average queue length.
When a packet from flow i arrives, qleni is compared against
these two thresholds. A flow with qleni less than the minimum
limit is not subject to random early dropping even if minth
≤ avg queue ≤ maxth. On the other hand, a flow which
consistently exceeds the maximum threshold is subject to more
aggressive dropping.

BRED extends FRED and imposes three thresholds, &1, &2,
and &3, on per-flow queue length, qleni. The three thresholds
divide the space of qleni into 4 regions: (0, &1), (&1, &2), (&2,
&3), and (&3, ∞), each of which is associated with a dropping
probability of 0, p1, p2(> p1), and 1, respectively. A router
keeps, for each active flow i, the queue length, qleni, and
the number of its packets accepted into the queue since last
drop, gapi. The dropping probability for a packet from flow
i is then a function of (i) the region qleni is in and (ii) gapi.
The reason for figuring gapi into the dropping probability is
to prevent consecutive multiple drops from a flow. In essence,
both FRED and BRED aim to improve the fairness of RED
at the expense of keeping per-active-flow state information.

Schemes that decouples the congestion index and
the performance index: Schemes in this category aim at
achieving both high utilization and low packet delay (queue
length). The key idea is to decouple the congestion measure

from the performance measure. Specifically, these schemes
either use additional measures (e.g., link utilization, input rate)
as congestion indices, or introduce an intermediate entity (the
price function in REM or the virtual queue in AVQ) so that
calculation of the dropping probability is not directly related
to the actual queue length.

In BLUE, the instantaneous queue length and the link
utilization are used as the indices of traffic load, and a
single dropping probability p is maintained and used to mark
or drop packets upon packet arrival. If the instantaneous
queue length exceeds a pre-determined threshold, L, a BLUE
router increases p by an amount of delta (which is a system
parameter). To avoid dropping packets too aggressively, BLUE
keeps a minimum interval, freeze time, between two successive
updates of p. Conversely, if the link is idle (i.e., the queue is
empty), the BLUE gateway decreases p by an amount of delta
periodically (once every freeze time). By adjusting p with
respect to the instantaneous queue length and link utilization
(idle events), BLUE is shown through simulation to make
the instantaneous queue length converge to an operational
point with small buffer sizes, while retaining all the desirable
features of RED.

REM decouples the congestion measure from the perfor-
mance measure by defining the price function, c(k + 1), as

c(k + 1) = max(0, c(k) + γ(α(Q(k) − Qopt) + x(k) − R)),
(19)

where x(k) is the aggregate input rate and R is the capacity
of the outgoing link. The (α(Q(k) − Qopt) term is the queue
mismatch, and the x(k) − R term the rate mismatch. Since
x(k) −R measures the rate at which the queue length grows,
it can be approximated as Q(k + 1) − Q(k), and Eq. (19)
reduces to

c(k+1) = max(0, c(k)+γ(Q(k+1)−(1−α)Q(k)−αQopt)).
(20)

The price increase if the weighted sum of these mismatches is
positive, and decrease otherwise. A REM router calculates the
marking probability periodically as p(k) = 1 − φ−c(k), where
φ is an arbitrary constant that is greater than 1.

The AVQ scheme, on the other hand, takes a dramatically
different approach, and uses solely the input rate, x(t), as the
congestion index. An AVQ router maintains a virtual queue
whose capacity, R̂, is adjustable. Upon packet arrival, the
virtual queue capacity is updated according to

dR̂

dt
= α(γR − x(t)). (21)

where γ is the desired utilization. The rationale behind
Eq. (21) is to mark/drop packets more aggressively when
the arrival rate exceeds the desired utilization (γR) and vice
versa. Also, a fictitious packet is enqueued in the virtual
queue if space is available. Otherwise, the fictitious packet
is not enqueued and the real packet in the real queue is
marked/dropped. The rule for choosing the parameter α is rig-
orously analyzed using a control theoretic approach to ensure
system stability. Through simulation in [16], AVQ is shown
to outperform REM in terms of reducing the packet drop rate
and average queue length and achieving high utilization.
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Category Scheme Congestion index Policies used to detect congestion and to drop/mark packets
Achieving fairness FRED [17] queue length Monitors the per-flow queue length and fine-tunes the drop-

ping/marking decision w.r.t. the per-flow queue length.
BRED [1] queue length Defines three thresholds and divides the state of per-flow queue

length into 4 regions. Fine-tunes the dropping/marking decision
w.r.t. the per-flow state.

Achieving high utilization
and low packet loss

BLUE [7] queue length, link idle
event

Increases p if the instantaneous queue length exceeds L and has
not been updated for over freeze time. Decreases p if the link is
idle for over freeze time.

REM [2] queue length, input
rate

Defines the price function, c(k), as in Eq. (19), and calculates the
marking probability as p(k) = 1 − φ−c(k),φ>1.

AVQ [16] input rate Maintains a virtual queue. At each packet arrival, enqueue a ficti-
tious packet and update the virtual queue capacity using Eq. (21).
Mark/drop a real packet only if the virtual queue overflows.

Stabilizing queue SRED [20] queue length keeping a zombie list to keep track of recently seen flows, to detect
misbehaving flows, and to estimate the number, N , of active flows.
Figures in N in the packet dropping probability.

PI [12] queue length, input
rate

Calculates the marking probability as in Eq. (22).

Scalable control [21] input rate Router updates its price function, pl(t), as in Eq. (23), and marks
packets with probability as 1 − φ−pl(t), φ > 1. Source sets its

rate as xi(t) = xmax,ie
− αiqi(t)

Miτi .

TABLE I

A TAXONOMY OF AQM SCHEMES.

Schemes that stabilize the instantaneous queue length:
SRED argues that the instantaneous queue length may fluc-
tuate dramatically under RED if the number of active flows
varies. To stabilize the instantaneous queue, SRED equips each
queue with a zombie list that keeps a list of M recently
seen flows. When a packet arrives, it is compared with a
randomly chosen zombie in the zombie list. The result of a
hit or a miss is used to detect potential misbehaving flows
for more aggressive dropping and to estimate the number of
active flows. The estimated value of N is then figured into
the calculation of the dropping probability p (e.g., p is an
increasing function of N ) so as to avoid, upon packet loss,
the situation of significant system throughput decrease in the
case that there are only a few active flows. The simulation
results indicated that SRED keeps the buffer occupancy close
to the specified value and away from overflow or underflow.

The PI controller also aims to stabilize the instantaneous
queue length, but it is built upon on a fluid model proposed in
[19] and takes a more systematic approach. The PI controller
marks each packet with a probability p which is updated
periodically using

p(k+1) = p(k)+a(Q(k+1)−Qopt)−b(Q(k)−Qopt), (22)

where a > 0 and b > 0 are constants chosen according to the
design rules given in [12].

The scalable control scheme proposed in [21] uses the link’s
price pl(t) as the congestion index and marks packets with
probability 1 − φ−pl(t), φ > 1. The link then updates its price
pl(t) using the aggregate input rate yl(t) according to:

·
pl(t) =

{ yl−cl

cl
if pl(t) > 0;

max{0, yl−cl

cl
} if pl(t) = 0

(23)

in which cl is the virtual capacity that is strictly less than
the actual link capacity. The source will set its sending
rate as an exponential function of aggregate price qi(t), i.e.

10Mbps, 40ms

10Mbps, 20ms

10Mbps, 40ms10Mbps, 40ms

10Mbps, 40ms

Fig. 6. The single bottleneck simulation topology.

xi(t) = xmax,ie
− αiqi(t)

Miτi . To utilize this scheme, the current
TCP congestion control and avoidance scheme has to be
changed.

The work that comes closest to ours is SRED and PI
controller, as both of them share the same objective of sta-
bilizing the instantaneous queue. Hence we will conduct a
comprehensive performance study between SRED, PI and SFC
in Section VII. On the other hand, as a side effect of using both
the deviations of the queue length and the incoming rate from
the operating point to determine the packet dropping/marking
probability, SFC also decouples the congestion measure and
the performance measure. Hence, we will also compare SFC
against AVQ (which is reported to give the best performance
in the second category) in Section VII.

VII. SIMULATION RESULTS

We have implemented our scheme along with RED [8],
SRED [20], PI [12] and AVQ [16] in ns-2 [4], and conducted
a simulation study to validate the performance of proposed
design and compare its performance against the other schemes.
The performance study was conducted with respect to queue
stability, packet loss rate, link utilization, and parameter ro-
bustness.
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Fig. 7. The multiple bottleneck simulation topology.
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Fig. 8. Performance comparison with respect to instantaneous queue length
among different schemes.

We examine the behavior of these schemes under a variety
of network topologies and traffic sources. In particular, we
have considered the network topologies with a single bot-
tleneck link of various RTTs (Fig. 6) and network topology
with multiple bottlenecks (Fig. 7). The link bandwidth and
propagation delay used in the simulation are, unless otherwise
specified, given in Fig. 6 and Fig. 7. The average packet size
is 1000 byte and buffer size on each link is 100 packets. The
traffic sources we use include long-termed TCP connections
and short-termed TCP connections, both of which support
ECN but do not enable the delayed ACK option. The number
of connections varies from 100 to 1000. The target queue
length is set to 50 packets.

The setting of parameters in the various AQM schemes is
as follows. The parameters of RED are set as recommended in
http://www.aciri.org/floyd/REDparameters.txt, and those of
SRED are chosen as recommended in [20] (i.e., M = 1000,
α = 1/M = 0.001, and pmax = 0.15). The desirable
utilization, γ, of AVQ is set to 0.98, and the damping factor,
α, is determined in compliance with Theorem 1 in [16] to
ensure system stability (α = 0.15). The parameters of our
scheme are k2 = 0.2 and k1 = 0.0005 as calculated in the
previous example. Each data point is the result averaged over
20 simulation runs. In spite of numerous system parameters
involved, the results are found to be quite robust in the sense
that the conclusion drawn from the performance curves for a
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Fig. 9. Performance comparison with respect to packet loss rate among
different schemes.
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Fig. 10. Performance comparison with respect to link utilization among
different schemes.

representative set of parameter values (reported below) is valid
over a wide range of parameter values.

A. Performance Comparison Under the Single Bottleneck
Topology

In this set of experiments, we compare SFC against the other
schemes in the single bottleneck topology (Fig. 6). Totally k
TCP connections are established over a single bottleneck link
of capacity 10 Mbps, where k varies from 100 to 1000. Fig. 8
gives the instantaneous queue length in the cases that 200
TCP connections are established and continuously transmit
packets. As shown in the figure, the instantaneous queue
lengths under SFC and PI fluctuate around the target level,
while the queue length under the other schemes are either
always full or oscillates between empty and full.

Figs. 9–10 depict, respectively, the packet loss ratio and the
goodput attained by all receivers. SFC outperforms than the
other schemes with respect to packet loss rate (by reducing
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Fig. 11. Performance comparison (in terms of the time taken for the queue
to stabilize) between PI and SFC.

as much as 50% packet losses), because it keeps the queue
size at the desirable level. As a result, buffer overflow seldom
occurs and less packets are dropped. As the PI controller
also attempts to keep the queue length at a target level, it
also achieves good performance. Although SRED shares the
same objective of stabilizing the queue at a desirable level,
it incurs much higher packet losses. This is attributed to the
fact that SRED always attempts to keep the queue full (as
shown in Fig. 8). On the other hand, as shown in Fig. 10,
AVQ, SRED, and SFC (almost) fully utilizes the bandwidth of
the bottleneck link. This is because the queue under SFC and
AVQ is seldom empty, while SRED always keeps the queue
full (which in turns leads to high packet losses). Overall, SFC
strikes a balance between reducing packet losses and queuing
delay, and utilizing link bandwidth.

B. System Response

In this set of experiments, we set the number of connections
to 100, the target queue length to 100, the buffer size to
300 packets, and compare the time it takes for the queue to
stabilize at the desirable level under the PI controller and SFC.
As shown in Fig. 11, SFC stabilizes the queue much faster
than the PI controller. Furthermore, the former incurs very
low overshoot. The fact that the PI controller incurs slower
response and larger overshoot is attributed to its integral part
in the controller.

C. Performance Comparison Under Dynamic Traffic Changes

In this set of experiments, we compare RED, PI, and SFC
in terms of their responses to dynamic traffic changes in the
single bottleneck topology (Fig. 6). 200 TCP connections (with
bulk data transfer) are established over a single bottleneck
link of capacity 10 Mbps. 50 TCP connections stop their
transmitting at the 60th second, and resume at the 70th second
again. Fig. 12 depicts the instantaneous queue length under
PI controller, RED and SFC. The instantaneous queue length
under PI and RED fluctuates significantly between the 60th
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Fig. 12. Performance comparison (in terms of instantaneous queue length)
under dynamic traffic changes.

and 70th seconds, while that under SFC is less susceptible
to dynamic traffic changes. The reason why RED does not
respond well to dynamic traffic changes is because the packet
marking/dropping probability of RED is a linear function of
the average queue length, and averaged queue length responds
slowly to instantaneous queue length changes and even more
slowly to the incoming rate change. The integral part of the PI
controller makes it response slowly to dramatic traffic changes.
In contrast, the marking/dropping probability in SFC is a
linear combination of the instantaneous queue length and the
incoming rate, and hence can adapt to traffic changes. Overall,
if taken queue length at a router as AQM system’s output, SFC
controller behaves sort of like a PD controller. That is the main
reason why it responses to queue length and incoming traffic
rate changes quickly.

D. Robustness w.r.t. RTT and # Connection Changes

In this set of experiment, we test the robustness of the
system parameters chosen in SFC with respect to different
values of RTT and different # of TCP connections. The
simulation setup is the same as in the first experiment, except
that the number of connections varies from 200 to 600 and
the RTT value varies from 200ms to 800ms. Figs. 13 and
14 depict, respectively, the link utilization (i.e., the goodput
attained by all receivers) and the packet loss ratio for different
values of RTTs and different numbers of TCP connections. It
is clear that although the system parameters chosen in SFC are
for the case of τmax = 600ms and Nmin = 300, the controller
still achieves high link utilization and low packet loss ratio,
regardless of the RTT and connection number changes.

E. Performance Comparison under the Multiple Bottleneck
Topology

Although SFC is designed for the case of homogeneous TCP
connections sharing a single bottleneck, we have conducted
simulation to evaluate its multiple in the bottleneck topology
(Fig. 7). As shown in Fig. 7, there are 5 queues among which
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Fig. 14. Robustness of system parameters chosen in SFC (packet loss ratio
with respect to different values of RTTs and # of connections).

queue 2 and queue 4 are shared by cross traffic of some other
TCP connections. Again we establish k TCP connections with
senders at the left hand side and receivers at the right hand
side, where k varies from 100 to 1000. The cross traffic is
composed of TCP connections as well, and the number of
TCP connections in each cross traffic bundle is set to 0.2k.

The simulation results show that the queue length at queue
5 is always 0 or 1, suggesting that the link is not a bottleneck
link. The other four queues exhibit similar trends as far as the
performance comparison is concerned. Hence, we arbitrarily
choose to depict the instantaneous queue lengths of queue 2
in Fig. 15 and the packet loss ratio and the link utilization
of queue 4 in Figs. 16–17, respectively. As shown in Fig. 15,
although the capability of SFC to stabilize the instantaneous
queue length degrades in the multiple bottleneck topology, its
queue length still oscillates around the desirable level (except
that the level of oscillation is larger than that in the single
bottleneck topology). The is perhaps due to the fact that every
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Fig. 15. Instantaneous queue length at queue 2 under different schemes in
the multiple bottleneck topology.
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Fig. 16. Link utilization at queue 4 under different schemes in the multiple
bottleneck topology.

router attempts to control its queue level locally, so that the
interaction among them becomes complicated.

The link utilization achieved under SFC is the highest, as
the controller attempts to keep the queue length stabilized
and responds quickly to the queue length and incoming rate
changes. The packet loss ratio under SFC is the second
smallest and that under PI is the smallest. The reason why
SRED does not perform as well in terms of packet loss ratio
is because SRED has the tendency to keep the queue (close
to) full, and hence packet losses occur as a result of buffer
overflow.

We also evaluate and compare the performance of our
scheme with other schemes’ in the presence of short-lived TCP
flows and non ECN-Enabled TCP flows, but due to the space
limitation, they are not presented in this paper.

VIII. CONCLUSION

In this paper, we have developed an analytical TCP model
that takes into account of several issues that were ignored in
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Fig. 17. Packet loss ratio at queue 4 under different schemes in the multiple
bottleneck topology.

the other existing models (such as those in [15], [19]), i.e., (i)
the congestion window is not gradually decreased at the rate of
w2p
2 , but suddenly halved upon receipt of congestion indication

and (ii) the congestion window is halved at most once during
one RTT. We also include the delayed ACK option in the
model. We show that this enhanced model more realistically
characterizes the TCP dynamics and that under this model the
change in the congestion window size is more significant in
response to packet losses. The latter cautions us for designing
an appropriate AQM controller. Based on this model, we then
design, with the use of state feedback control theory, an AQM
controller, called SFC, to stabilize the queue at a router. The
performance of the new controller is shown via ns simulation
to outperforms the other schemes in terms of fluctuation in
the queue length, link utilization, and packet loss ratio. In
particular, SFC can reduce packet loss by more than 50%
as compared to the other schemes and yet achieve full link
utilization. As compared to PI controller proposed in [12],
SFC achieves 10% more link utilization.

We have identified several research avenues. First, it has
been shown that the long range dependency characteristics of
the Internet traffic can be exploited to better design AQM [9].
Along this research avenue, we will use exercise predictive
control by combining traffic prediction and TCP/AQM models
to stabilize queue length. Also, we will exploit non-linear
control and adaptive control to avoid linearization of the model
and enable the controller to be on-line adaptive to system
parameter changes.
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