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Abstract—Applications on mobile computers must adapt to high
variability in wireless network performance. Extending the seman-
tics of transport protocols to offer more control over communica-
tion to the user allows applications to adapt their behavior to band-
width variability. We examine adding bandwidth notifications, pri-
orities and timeliness guarantees to a network API as a method for
achieving greater application control over bursty traffic. Exper-
iments demonstrate that the extended API allows applications to
adjust to bandwidth variations effectively. We also compare three
different implementations of the API: two which run on top of TCP,
and one new protocol, ATP, which performs comparably to the TCP
extensions, but has better performance for some workloads, includ-
ing a workload simulating remote file system traffic.

I. INTRODUCTION

Wireless networks are characterised by high variability in
network conditions: bandwidth and round-trip times can vary
greatly depending on the distance of a host from a base station,
and on local interference. The problem of adapting applications
and network protocols which make use of stream-oriented com-
munication, such as video playback, to variable wireless network
conditions has been well studied. In this paper, we describe our
work in providing support for applications which exhibit bursty
communication patterns.

Many of the applications which one might wish to use on a
wireless host send or receive data of multiple types, which are
not of the same precedence, or sent in the same volume. For in-
stance, FTP sends separate control and data messages, and a dis-
tributed file system client might send cache validations, receive
new versions of files and write back modified files. In order to
react to changing bandwidth available to the host, an application
designed to operate in a wireless network might adjust its com-
munication patterns, reducing the transmission of data of one
type while increasing the priority of another type of data. Un-
fortunately, most existing interfaces to network protocols, such
as the BSD sockets interface, do not provide much detail about
network conditions to the user. Making up for this omission and
supplying a greater degree of control over network communica-
tions to applications is a nontrivial undertaking: even the task
of determining the bandwidth available to the application can be
complicated if there are multiple applications concurrently using
the network.

The authors were supported in part by DARPA/AFRL-IFGA grant F30602-99-1-
0532, with additional support from Microsoft Research and from the Intel Cor-
poration.

We have concentrated on bursty applications that send mes-
sages over the network intermittently or unpredictably, since
stream-oriented protocols such as TCP have been highly op-
timised for wireless networks. Bursty communication makes
tasks such as dividing bandwidth between different classes of
data more difficult, since the bandwidth allocation between
classes cannot be both constant and fair. Dealing with mes-
sages rather than streams also permits a more flexible interface,
in which a message can be re-prioritised or have its transmission
suspended, restarted, or cancelled. Web browsers, file systems
and FTP, and X Windows are potential examples of applications
which could benefit from our extended network API.

The structure of the rest of this paper is as follows. Section II
describes the motivation for our API and identifies some appli-
cations which could benefit from it. Section III describes NAI,
the Network-Aware Interface we have designed for bursty com-
munication. Section IV describes the ATP implementation of
NAI and its algorithms, as well as discussing some examples
of execution. Section V compares the performance of ATP to
TCP and implementations of NAI over TCP, in a series of exper-
iments. Section VI summarises related work, while Section VII
concludes and describes our plans for future work.

II. MOTIVATION

To illustrate the scope of variability in wireless communica-
tion, we have measured network conditions in our own 802.11b
wireless network. Figure 1 shows some representative measure-
ments. The graph of bandwidth in Figure 1(a) is derived from
packet-pair measurements [1] made by a receiving host as the
sender moved in the vicinity of a base station. Each second,
two packets were sent consecutively from the wireless host to
the receiver, which was connected to the base station, to mea-
sure the inter-arrival time. Under ideal conditions, the inter-
arrival time measurement corresponds to the time to send a sin-
gle packet over the wireless network. The inverse of this number
provides a rough indication of the bandwidth available at that in-
stant. We note that since the 802.11b protocol incorporates its
own packet retransmissions, high error rates are translated into
reduced bandwidth and increased latency.

Both the bandwidth and round-trip time measurements shown
in Figure 1 are highly variable. Applications which perform
a large amount of network communication under these types
of circumstances may have poor performance, unless they can
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Figure 1: Time series of bandwidth and round-trip times over a 10 minute interval in a wireless LAN. The graphs show values obtained by a
combination packet-pair and round-trip time estimate for 1500-byte packets measured on our wireless network. A laptop communicated over a
wireless link with a desktop machine attached to a base station. Variations are due to distance from the base station and local interference around
the laptop as it moved. The regions from 0-100 and 500 seconds onwards correspond to the laptop being next to the base station.

adapt to such a degree of variability. Underestimating the avail-
able bandwidth may underutilise the network, and overestimat-
ing bandwidth may leave an application unable to function.
Adaptive applications are able to change their degree of com-
munication or mode of operation to suit the currently available
bandwidth. Examples of classic adaptive applications include
streaming video playback and image retrieval during web brows-
ing [2], [3]. In response to low bandwidth, a video player might
reduce the quality of the frames it displays, or a web browser
might retrieve degraded versions of images appearing in web
pages, instead of the original high-quality versions. We call this
modal adaptation, since the application has a set of modes it
can operate in, each with an associated communication cost, and
chooses its current mode based on the available bandwidth.

Considered as a whole, Web browsing is an example of a dif-
ferent class of applications, which we call mixed-mode applica-
tions. In contrast to video playback, these are typified by irregu-
lar communication of distinct units of data, which can be divided
into several classes of importance. Common characteristics of
mixed-mode applications might include:

(i) Bursty communication of discrete, application-specified
data items

(ii) Different classes of data transfers, each with a different
importance (priority), and potentially with different time-
liness requirements and distributions of sizes

(iii) Possibility for fine-grained adjustment of behavior based
on bandwidth availability

We have already listed some examples of potential mixed-mode
applications. Two are particularly worth elaborating on:

Web browsing: A web browser retrieves text, images and other
data types. Rather than uniformly degrading image quality, it can
prioritise text over images, and then leave the remaining band-
width to be used for image retrieval. Encodings such as progres-
sive JPEG for images can allow optimistic retrieval of an image
at high resolution, and an early abort of the request (or a partial
result) if bandwidth turns out to be insufficient. Web browsing
is an interactive activity, so the tradeoff of image retrieval delay
versus available bandwidth can also be used to decide at which
quality to retrieve an image.
Distributed file system: Distributed file systems are popular
because of the convenience, security, fault-tolerance and data-

sharing capabilities which they provide, in contrast to the file
system local to a machine [4]. Unlike web browsing, the work
done by a distributed file system client may be on behalf of sev-
eral independent applications on a host (for instance, a word pro-
cessor and compiler executing concurrently). A caching file sys-
tem client also performs multiple types of communication with
a file server: it has to fetch files in response to requests and write
files back to the file server, and it may also validate files in the lo-
cal cache in order to reuse them, and prefetch files. If a file is not
shared with other users, then writing it back to the file server can
be delayed until bandwidth is plentiful; prefetching files is only
advantageous if it does not degrade the overall performance of
the file system client. Once again, timeliness of communication
is important, in order to prevent the user suffering long delays
in file accesses. Cache validations should be performed quickly,
but prefetches can take longer.

III. A NETWORK-AWARE API

TCP is a well-tuned protocol and the standard reliable com-
munication protocol for the Internet, so the benefit of imple-
menting a completely new, incompatible protocol is small. Since
most of the mismatch between TCP and the mixed-mode class
of applications we have identified stems from the narrow inter-
face to TCP, the approach we have explored is to implement a
protocol that runs on top of TCP or some other reliable transport
protocol, but has enhanced semantics.

We use the name NAI (Network-Aware Interface) to refer to
the API itself. In Section V we compare three implementations
of the interface: ATP, NAI-TCP, and NAI-MTCP, of which ATP
(the Adaptive Transport Protocol) is the most sophisticated. Our
discussion of NAI is made with reference to its implementation
in ATP, which includes all the features of NAI.

A. Sending and receiving messages

The basic operations of NAI conform to the BSD sockets in-
terface. NAI provides the regular socket, bind, and con-
nect calls, but augments the sendmsg and recvmsg calls
with additional information. Unlike TCP, NAI is message-
oriented: an application specifies its data units (files, images,
RPCs, and so on) to NAI explicitly, and NAI preserves message
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boundaries at the receiver. NAI incorporates some ideas from
Application Level Framing (ALF) [5] in the way that it han-
dles messages. When an application makes a send call, it tells
NAI how to process the message: what its priority is relative to
other messages, and how to react if there is insufficient band-
width to deliver the message. Priorities are strict, so that low-
priority messages wait for the high-priority messages ahead of
them. Messages can be sent synchronously or asynchronously,
allowing a sender to inspect the state of a message as it is being
sent, to see how much data remains to be transferred. Based on
this information, it might decide to abort the transfer, defer it to
make way for more important messages, or restart it if it was
already deferred.

B. Message queues

A strict priority scheme for transmitting messages introduces
the possibility of starvation of low-priority messages. This is
particularly the case for multiple non-cooperating applications,
since one application could undermine the priority scheme by
putting all of its messages at the highest priority. Transmitting
all messages of one priority serially would also make the trans-
mission delay for a message highly unpredictable, so that an
application might have trouble setting callback timers appropri-
ately. To overcome these problems, NAI incorporates message
queues. Each application initially has a separate message queue,
and it can create additional message queues as it sees fit. NAI
schedules messages from each message queue independently, di-
viding the available bandwidth between the queues according to
the highest priority used by the queue. In this way, even an ap-
plication which exclusively uses the lowest priority level will get
some share of the bandwidth, though not as much as applications
which use all the priority levels. We do not describe message
queues in detail in this paper, since techniques for bandwidth
division among concurrent streams are already well studied [6].

C. Bandwidth estimation and timers

In order to adjust its behavior based on network conditions, an
application must first know how much bandwidth is available.
The true bandwidth cannot always be determined accurately, so
a bandwidth estimate must be derived. ATP incorporates a band-
width estimator, but the two simpler implementations of NAI do
not. The remainder of this section describes NAI over ATP.

The most straightforward way for an application to monitor
how much bandwidth is available is to register a bandwidth call-
back and an associated bandwidth range (this is an idea borrowed
from Odyssey [3]). A bandwidth callback is a function speci-
fied by the application, and called by NAI when the bandwidth
moves outside the specified range. The bandwidth callback func-
tion may itself register a new callback, with a new range around
the new bandwidth value.

A disadvantage of this mechanism is that if multiple applica-
tions are using the network, then they will all see the same band-
width estimate, unless bandwidth is somehow shared between
them (we discuss sharing bandwidth between applications later
in this section). If the applications communicate in bursts, rather

than over streams, then it is nontrivial to determine what share
of the bandwidth each should be entitled to, and therefore, what
estimate it should be given.

An alternative solution, which is also provided by NAI, is to
allow applications to specify their bandwidth requirements im-
plicitly, by using callback timers for individual messages. A
callback timer specifies a timeout and a function to call if the
timeout expires; it can also expire early, if the bandwidth es-
timate indicates that the message cannot be delivered in time,
according to the current bandwidth. Using a callback timer, an
application can specify how long it expects a message to take
to transmit – implying a corresponding available bandwidth –
and relies on NAI to invoke the callback if the timeout occurs.
If the callback is invoked, NAI first suspends transmitting the
message, and the application then decides whether to continue
or defer transmission, or to cancel the message. Callback timers
provide a finer degree of control than coarse modes based on the
available bandwidth, since the application can speculatively send
messages without knowing ahead of time that the bandwidth to
deliver them is available. Using a callback timer also allows an
application to ensure timely delivery for a message.

Implementing callback timers requires controlling the admis-
sion of messages. The ATP implementation does this by ranking
messages by priority and then deciding if a new message can
be added to the currently queued messages without jeopardising
the timers of any existing messages (that is, without causing a
message which was deliverable under the current bandwidth to
exceed its timeout value). Within a priority level, ATP uses the
Earliest-Deadline First scheduling algorithm [7], familiar from
real-time scheduling, for delivering messages within their time-
out intervals.

Of course, not all messages are sent with callback timers, in
which case they are implicitly assigned an infinite timeout. An
application which does not make use of callback timers at all
could accumulate a large backlog of messages, if it sends mes-
sages at a faster rate than they can be transferred over the net-
work. We are investigating implementing a backlog-based call-
back scheme to support these types of applications, which in-
vokes callbacks based on the incoming and outgoing rates of
messages.

IV. IMPLEMENTATION

Implementing NAI within the Adaptive Transport Protocol re-
quires some effort, even with the aid of a reliable protocol such
as TCP. Bandwidth estimation, managing timers, and providing
message-oriented, rather than stream-oriented semantics, must
be provided on top of the underlying kernel protocol. In ad-
dition, TCP’s congestion-control scheme represents a potential
obstacle to our mechanisms for flow control and assigning prior-
ities to messages.

ATP, the complete implementation of NAI which we describe
here, runs at user-level over TCP or UDP, and consists of ap-
proximately ten thousand lines of C code. The other two imple-
mentations of NAI are described in Section V.
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Figure 2: Unequal divisions of bandwidth for concurrent TCP connections. Each flow transmits 32 KB messages back-to-back for 2 minutes;
sequence number plots for the connections are shown. In (a), the stream shown by the darkest line pauses for 100 ms between each send call; in
(b), it pauses for 150 ms. Plot (c) is a magnification of the boxed region in (b). Vertical lines in (c) indicate instants when the stream with the delay
between sends completes sending a message: this interval of plot (b) shows a high degree of variation in the bandwidth obtained by the delayed
stream.

A. Reliable transport subsystem

ATP is a reliable protocol, so it must run on top of a reli-
able datagram protocol or a reliable stream protocol. At first
glance, TCP would seem to be perfectly adequate, since it has
been highly optimised to perform well both in local-area net-
works and wide-area networks. TCP has also been adapted to
cope with the peculiarities of wireless networks, such as high
error rates and packet losses [8], [9].

However, implementing ATP on TCP requires considering a
number of alternatives. Transmitting an entire message at once
using TCP may result in the message being buffered in the ker-
nel (if there is sufficient buffer space), preventing an application
from deferring the send operation or aborting it. Once TCP has
copied data into the kernel, it is not easy to determine how much
of it has been sent. A final difficulty lies in deciding whether
to use multiple streams to connect the sender to the receiver,
and, if so, how to allocate messages to streams. Using a single
TCP stream will result in all message transmissions being se-
rialised, so that a high-priority message may have to wait for a
low-priority message. Using multiple TCP streams may result in
unpredictable competition for bandwidth, since TCP is a greedy
protocol and most common implementations of TCP do not co-
ordinate congestion control between streams [10].

In our initial version of ATP, we chose to allow message trans-
mission over either TCP, or a reliable datagram protocol on top
of UDP, which we will refer to as SPP (Sequenced Packet Pro-
tocol). The TCP implementation is the simpler of the two, and
runs over a single TCP connection, but sends messages in fixed-
size segments (1 MTU), rather than sending an entire message
at a time. Padding is required for small messages to enable the
receiver to detect segment boundaries. It has the natural advan-
tage of being TCP-friendly. The SPP implementation performs
its own buffering, retransmissions and duplicate suppression at
user level. Since it uses UDP datagrams, it requires no padding
to distinguish message boundaries, and is therefore more effi-

cient for transmitting small messages. Unlike TCP, SPP is not
optimised for WAN use, and has not been thoroughly tested to
determine its fairness or behavior under high error rates. It is
robust to the errors we have seen in our 802.11b network, and
to packet drops caused by queue overflows in the sender’s net-
work stack. The ATP experiments in this paper use the version
running over SPP.

For the purposes of comparison, we have also implemented a
version of NAI using multiple TCP connections, one per priority
level, which we refer to as MTCP (multi-stream TCP, described
in more detail in Section V). We conducted some experiments
to assess the behavior of concurrent TCP streams and determine
if this design was suitable for an NAI implementation.

The graphs in Figure 2 illustrate some cases of competition
between concurrent TCP streams which result in an unequal di-
vision of bandwidth. We conducted experiments to measure
how three concurrent TCP flows compete for bandwidth over
a link with a capacity of 256 KB/s. Each flow sends 32 KB
messages in a loop for 120 seconds. One of the three senders
was delayed for a constant amount of time between the com-
pletion of one send call and the start of the next, to investigate
the effect of TCP’s slow-start restart [11] for idle connections.
The expected outcome of these tests would be for the two un-
delayed senders to receive a roughly equal share of bandwidth,
and the delayed sender to receive a smaller share, decreased in
proportion to the size of the delay. However, as Figures 2(a)
and 2(b) show, the shares of bandwidth are not constant, and
at some points the delayed sender outperforms the undelayed
senders! In addition to looking at sequence number plots, we
also calculated the times taken for individual send operations by
the delayed sender. Figure 2(b) shows a sequence number plot
where the delayed sender waits for 150 ms between send op-
erations; measuring the time between completion of successive
sends gives an average of 0.42 seconds, but a range from 0.22
to 1.09, almost a five-fold variation (a minimum of 0.22 is pos-
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sible because the send can buffer data in the kernel and return
fast, overlapping with the delay). This compares to an expected
mean of 0.375 seconds if all the streams received equal band-
width. Figure 2(c) shows the region of this test that the send
operation taking 1.09 seconds lies in, with vertical bars indicat-
ing the completion times of sends. This type of unpredictable
and uncontrollable contention effect argues that NAI over mul-
tiple TCP streams may ultimately be inferior to other options,
particularly in settings where small and infrequent high-priority
messages are intermixed with lower-priority bulk data transfers.

B. Bandwidth estimator

Estimating bandwidth is a necessary component of an adap-
tive transport protocol, since both the application and the pro-
tocol itself rely on this value in order to adapt appropriately to
network changes. ATP requires a bandwidth estimate to fully
implement callback timers, or else a message can never be re-
ported as undeliverable before its callback timer expires.

Much work has been devoted to the general problem of esti-
mating bandwidth for flows in a wide-area network. Wide-area
bandwidth estimation schemes must arrive at an estimate of lim-
iting bandwidth, which lies at some link along the path between
a sender and receiver. In contrast, we assume that the rate of
communication is principally limited by the bandwidth on the
wireless link. Since all communication between the mobile host
and remote hosts must be over this link, we can estimate the total
bandwidth available on it, rather than deriving separate estimates
for each connection or destination host. Our current estimator
assumes that traffic from protocols other than ATP constitutes a
negligible fraction of the total traffic, but this restriction would
be removed in a kernel version of ATP.

A further important difference from wide-area bandwidth es-
timation is a side-effect of ATP semantics. Since ATP incorpo-
rates priorities for messages, an inaccurate estimate can cause a
priority inversion.

The difficulty is that the device driver may buffer datagrams
when it is unable to transmit as fast as the incoming rate. If an
over-optimistic bandwidth estimate causes the kernel to buffer
datagrams from low-priority messages, these will hold up the
transmission of datagrams from high-priority messages until the
send queue is free of low-priority datagrams. It is impractical to
remove datagrams from the send queue, but some operating sys-
tems allow the length of the queue to be read by applications (for
instance, by FreeBSD’s ifmib feature). The ATP bandwidth
estimator incorporates a heuristic to “back off” and reduce its
estimate when it detects a backlog in the send queue.

The bandwidth estimation algorithm: A straightforward
scheme for bandwidth estimation is to count how many send op-
erations, and of what sizes, complete over an interval, and divide
to find the estimate. This can be inaccurate because the kernel
buffers data, both at the protocol level (in the case of TCP –
UDP does no buffering), and at the network device driver. Addi-
tionally, the time required to derive an estimate depends on the
amount of data being sent. Blocking on a send operation for a
large message will delay the estimate until the send completes.

int curbw;
int staleness = 0;
int polldelay; // configurable, >= 0

bandwidth_estimate(used, backlog) {
used = maximum(used, filter(used));

if (backlog > MAXIMUM_BACKLOG) {
curbw = used; staleness = 0;
return (used, used - backlog*MTU);

}
else if (used < curbw) {

int probe = PROBE_SIZE;
staleness++;
probe *= staleness / polldelay;
curbw = used;
return (curbw, curbw + probe);

}
else {

staleness = 0;
return (curbw, curbw + PROBE_SIZE);

}
}

Figure 3: The bandwidth estimation algorithm. Every second, ATP in-
vokes the bandwidth estimator to determine a new estimate (this is a
tuple of the internal estimate and the estimate advertised to the applica-
tion). The bandwidth used over the preceding second is averaged with
the values for the four preceding seconds, then the new estimate is gen-
erated, depending on the backlog and staleness of the current estimate.
MAXIMUM BACKLOG is set high enough to avoid transient backlogs (10
in our implementation), and PROBE SIZE is half the minimum of the
send queue capacity and the current estimate.

Alternatively, the bandwidth used by a TCP connection can be
derived from TCP’s round-trip time estimate and the send win-
dow size. However, this value reflects how much data has been
sent on the connection, and not the potential capacity of the con-
nection.

ATP derives its estimate by polling the network card for the
amount of data sent and received over the course of each second.
This quantity is then used as a predictor of the bandwidth over
the next second. Since the bandwidth reported by the network
card depends on the amount of data which ATP tries to send,
this simple estimate is inaccurate if the true bandwidth is higher
than the send rate. Accordingly, the bandwidth estimator uses a
probing scheme to speculatively increase the estimate.

Estimation relies on three statistics: the observed bandwidth,
the length of the network interface send queue (backlog), and the
staleness of its current estimate. Staleness measures the number
of seconds since the last point at which the estimate changed,
or since there was a “genuine decrease” in available bandwidth.
A genuine decrease can be distinguished from a decrease in the
count of bytes transmitted by detecting that the length of the send
queue has increased (in fact, we check that it exceeds a threshold
of 10 packets; the maximum length allowed is 50 in FreeBSD).

Figure 3 shows pseudocode for the bandwidth estimation al-
gorithm. It runs once every second, and computes two val-
ues based on the statistics obtained over the previous second:
curbw and available. The available value is the esti-
mate of available bandwidth on the wireless link, which is sup-
plied to the application. The curbw value is the amount of band-
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Figure 4: ATP behavior for two workloads. Graph (a) shows bandwidth usage for a workload of 64 KB messages, entering the system every
quarter of a second, with callback timeouts of one second. When bandwidth is less than 64 KB/s, no messages are admitted. Graph (b) shows a
combination workload of high-priority 4 KB messages and low-priority 256 KB messages with long timers.

width which ATP should restrict itself to using over the next sec-
ond. This is an internal ATP statistic, which may be lower than
available if the network interface send queue is nonempty
and there is a consequent risk of priority inversion. The avail-
able value may also be higher if the estimator is probing the
bandwidth. An averaging filter with a window size of 5 is used
to smooth the estimates in order to make them less sensitive to
transient spikes.

If the application has queued more messages than can be sent
in a single second, then the estimator will automatically detect
increases in available bandwidth, since the per-second usage will
increase as the bandwidth increases. However, if the network is
underutilised, then an increase may not be detected without an
additional mechanism. For instance, an application using ATP
may use the bandwidth estimate to determine its mode of op-
eration, and not change into a mode using more bandwidth un-
less the estimate goes up. In this case the surplus bandwidth
would never be exploited. ATP breaks this deadlock in two
ways. Firstly, in the trivial case where the application is un-
willing to send any data because it believes the bandwidth is
zero, ATP polls the remote host to determine when bandwidth
rises above zero, making a simple packet-pair estimate [12].
Secondly, ATP probes the bandwidth by speculatively increas-
ing the estimate it gives the application. The intent behind this
mechanism is that the application will eventually decide the es-
timate is high enough and attempt to exploit it by sending more
data. Figure 3 shows the probe mechanism as part of the band-
width estimate routine.

C. Examples of ATP execution

To place the preceding algorithms in context, we examine
some representative executions of ATP. Figure 4 shows band-
width estimates for two examples of ATP execution. The actual
bandwidth curves are synthetic, and were generated with the use
of the Dummynet traffic-shaping module [13] (the bandwidth
curves are explained in more detail in section V).

Graph (a) shows the bandwidth estimates when the system is
saturated: every 0.25 seconds, a new 64 KB message enters the

system, and must be delivered within a second. Between 120
and 220 seconds, almost no messages are admitted, since the
bandwidth estimate is below 64 KB/s. Admission ceases when
the estimate is in the vicinity of 64 KB/s, and resumes when the
estimate has jumped to 140 KB/s from 48 KB/s. An anomaly is
evident at 193 seconds, where the estimate jumps sharply due to
a packet-pair measurement. Though this causes some messages
to be incorrectly admitted, it is quickly rectified.

Graph (b) shows a mixed workload, with both high-priority
and low-priority messages. Every 0.5 seconds, a high-priority,
4 KB message with a 1-second callback timeout enters the sys-
tem; every 8 seconds, a low-priority, 256 KB message with a
16-second timeout enters. The spikes in the reported bandwidth
curve indicate these larger, low-priority messages. The combi-
nation of smaller messages and looser timeouts allows ATP to
make use of the period between 180 and 210 seconds when band-
width is at 50 KB/s.

The use of the bandwidth estimate for message admission is
illustrated in Figure 5, which shows part of an execution of the
same workload as in Figure 4(b). Events at the sender are shown
at the left, and at the receiver on the right. Arrows indicate the
correspondence between the entry of messages into the system
and their delivery to the receiver. The small, high-priority mes-
sages arrive every 0.5 seconds, while a large message arrives ev-
ery 8 seconds. The decreasing bandwidth estimates correspond
to the system entering the zero-bandwidth region of Figure 4(b).
The interval between arrival of a small message and its deliv-
ery lengthens as bandwidth decreases, and some small messages
are dropped due to their timers expiring. It is worth noting that
some arrival-to-delivery intervals are greater than one second,
the nominal timeout, but this is due to the timeout only being
enforced at the sender, not at the receiver, in order to avoid
requiring clock synchronisation. While the bandwidth is tech-
nically sufficient for delivery of all the small messages shown
on the timeline, a reduction in the available value after 138
seconds leads to some messages being discarded when their call-
back timers expire. Insufficient bandwidth at 145 seconds causes
a new 256 KB message to be rejected, and the 256 KB message

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



small 286  136.064
bandwidth 54005 small 287  136.564

large 288; small 289  137.054
bandwidth 54005 small 290  137.554

small 291  138.064
bandwidth 41592 small 292  138.554

small 293  139.064
bandwidth 38612 small 294  139.564

small 295  140.064
bandwidth 38612 small 296  140.566

small 297  141.056
bandwidth 30906 small 298  141.566

small 299  142.064
bandwidth 29297 small 300  142.564

small 301  143.064
bandwidth 29297 small 302  143.554

small 303  144.064
bandwidth 20682 small 304  144.564

large 305 rejected; small 306  145.064
bandwidth 21266 small 307  145.554

small 308  146.064
bandwidth 21266 small 309  146.554

small 310  147.054
bandwidth 14479 bandwidth 288 2  147.476

bandwidth 14181 bandwidth 310 1  148.455

bandwidth 11237

bandwidth 7984

bandwidth 5287

136.215  delivered 286
136.675  delivered 287

137.275  delivered 289

138.245  delivered 290

139.277  delivered 291
139.605  delivered 292

140.365  delivered 294
140.696  delivered 295
141.115  delivered 296

142.176  delivered 297
142.546  delivered 298

143.416  delivered 300
143.706  delivered 301

144.406  delivered 302

146.646  delivered 307
147.036  delivered 308

147.786  delivered 309

151.203  cancelled 288

Figure 5: Timeline of ATP execution. The section shown is from the execution of the same workload as shown in Figure 4(b). Entry points of
messages into the system are denoted as “small” (high-priority, 4 KB) or “large” (low-priority, 64 KB), followed by a sequence number. The
per-second bandwidth estimate is given in grey (each estimate is computed at the time marked by the line above it). Arrows indicate when sending
an message commences at the sender and receipt occurs at the receiver. Messages after 148.5 seconds, and removal of messages due to timers,
have been omitted – an message without an arrow was dropped due to a timer expiring.

admitted at 137 seconds is discarded due to insufficient band-
width at 147 seconds, before its timer has expired. The fact that
the notification of cancellation arrives at the receiver four sec-
onds later is due to the backlog in the device driver send queue.
Slow delivery of cancellation notifications is tolerable because
they serve only to free buffer space at the receiver.

D. Adaptation mechanisms

ATP incorporates two mechanisms by which an application
can keep track of bandwidth availability: explicitly, through the
use of bandwidth notifications, and implicitly, by relying on call-
back timers and callbacks to express its assumptions about the
bandwidth. In this section, we compare the behavior of these two
techniques with a mixed-mode workload and a bandwidth trace
drawn from measurements of our wireless network (the trace is
a subinterval of the trace shown in Figure 1). In addition, we
show some effects of varying the poll delay for the bandwidth
estimator, as described in Section IV-B.

The application we tested has four logical modes, correspond-
ing to different levels of bandwidth usage. At each level, mes-
sages are sent with a 1-second timeout, of a sufficient size and
frequency to match the target bandwidth usage, as follows:

level upper bound usage total usage
1 100 KB/s 25 KB/s 25 KB/s
2 200 KB/s 100 KB/s 125 KB/s
3 400 KB/s 125 KB/s 250 KB/s
4 none 250 KB/s 500 KB/s

“Upper bound” refers to the upper limit of bandwidth for trans-
mitting at that level; “usage” refers to the bandwidth usage if all
messages at that level are delivered successfully; “total usage”
gives the cumulative figures. Tests were conducted using two
styles of adaptation:

Bandwidth notifications only. Each level corresponds to a mode
of operation; the application registers the low and high ends of

MB transferred by levelalgorithm poll
1 2 3 4

total bw

bandwidth 1 s 5.6 18.7 9.7 7.4 41.5 44.0
callbacks 1 s 6.2 19.9 12.2 10.2 48.5 54.1
bandwidth 3 s 5.8 14.5 6.9 3.2 30.4 32.4
callbacks 3 s 6.6 18.2 9.4 8.9 43.1 47.6

Table I: Results for adaptation tests. Some results for the two adapta-
tion schemes and poll delay values (the “poll” column) are shown. The
“total” column gives the total throughput of successfully delivered mes-
sages, and the “bw” column gives the total bandwidth used (including
incomplete messages).

the bandwidth range for the current level, and ATP notifies it
when the bandwidth estimate moves outside the range. When at
mode n, the application sends all messages from levels 1 to n.
All messages have the same priority.
Callbacks+priorities. The application transmits without using
modes, instead sending messages for all the levels concurrently,
but with priorities to rank the messages (level 1 having the high-
est, level 4 the lowest priority).

We ran experiments using these two adaptation schemes and a
number of values for the poll delay parameter. Using a band-
width trace results in a high degree of time-dependence in the be-
havior of the algorithms, which makes direct comparisons under
identical circumstances problematic: for brevity, we only present
a few representative results in Table I. Three of these test cases,
showing the mode of operation of the application over time (or
the highest level it sends at over time), appear in Figure 6.

Graphs 6(a) and 6(b) show that the poll delay has an appre-
ciable effect on bandwidth utilization. Slowing down the rate
at which the bandwidth estimate rises may reduce the instability
of the mode the application operates in (see the mode lines for
250-260 seconds in the two graphs), but also leads to a slow re-
action when the bandwidth rises suddenly, since the application
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Figure 6: Effects of adaptation schemes on a mixed-mode application. These graphs show two bandwidth curves: the upper curve is the actual
available bandwidth from the trace shown in Figure 1, and the lower curve is the bandwidth used by the application. Additionally, horizontal lines
indicate intervals when the application was operating in each of the four modes: a mode line corresponds to the bandwidth required to deliver
all messages in that mode (for callback adaptation, this shows the highest level for which a message was delivered during each second). Graphs
(a) and (b) show examples of the “bandwidth-only” adaptation scheme with poll delays of 1 and 3 seconds. Graph (c) shows an example of the
“callbacks+priorities” adaptation scheme with a poll delay of 1 second. The true bandwidth curve is smoothed for clarity in these graphs, though
not in the actual tests.

waits until it gets a bandwidth notification before it starts exploit-
ing the new level. As graph 6(c) shows, the callbacks+priorities
scheme is less reliant on the bandwidth estimate, since it always
has a large number of messages which it can potentially send.
Comparing the amount of data transferred at each level reveals
that the callbacks+priorities scheme sends more data success-
fully for both poll delay values, at the cost of a higher overhead
in wasted bandwidth, while the modal scheme is more conser-
vative. If the higher overhead can be tolerated, a mixed-mode
adaptation scheme therefore appears more appropriate for bursty
applications.

V. EXPERIMENTS

We have compared the performance of three implementations
of NAI, ATP and two simpler TCP-based implementations. Two
sets of experiments were performed. First, ATP’s performance
for bulk data transfer was measured, without making use of
NAI’s extended semantics, and second, ATP and NAI-over-TCP
were compared for a number of workloads incorporating call-
back timers and priorities. We describe the experimental setup
and methodology before presenting the results of the experi-
ments.

A. Experimental setup

We ran our experiments on an Aironet IEEE 802.11b wire-
less subnet with a single base station, which was attached to
a Ethernet switch. A 1 GHz Celeron desktop computer run-
ning FreeBSD 4.5 served as the receiver. To minimise effects
of contention on the wired network, it was attached directly to
the switch. The sender was an 800 MHz Pentium III laptop, also
running FreeBSD 4.5, and communicating through an Aironet
wireless Ethernet card. The advertised throughput of the Aironet
card is 11 Mbps, though in normal use we never saw more than
4.9 Mbps. When there were no obstructions or major sources

of interference between the card and base station, data rates of
between 5.6 and 7.4 Mbps were observed.

In order to achieve repeatable results for experiments, we used
the FreeBSD Dummynet traffic shaping module [13] to control
the bandwidth and round-trip time at the sender according to a
trace file. As we have described in Section IV-D, we have found
that using real traces of bandwidth in a very high variability in
experimental results. To eliminate some of this variability, we
used a simplified, synthetic bandwidth trace which was already
shown in Figure 4.

B. Experimental methodology

We compared the ATP implementation of NAI with two
TCP implementations, which incorporate priorities and callback
timers, while excluding more complex features of ATP, such as
the bandwidth estimator. Both TCP implementations of NAI run
at the user level, but differ in their degree of sophistication:

TCP with timers (“NAI-TCP”). The sender opens a single,
blocking connection to the receiver. New messages wait on a
queue to be sent. Whenever a send call returns, the first queued
message is sent if less than half of its timeout has expired, other-
wise it is discarded (this heuristic was intended to protect against
backlogs when bandwidth was very low). Send operations are ir-
revocable. Once a send completes, the time is compared against
the timer to see if it was delivered within the timeout. The re-
ceiver sends a 1-byte user-level acknowledgement to the sender
upon receipt of each message, so as to eliminate the effect of
TCP sends returning early when data is still buffered in the ker-
nel. NAI-TCP is implemented in two hundred lines of C code.
Multi-stream TCP (“NAI-MTCP”). Multiple messages can be
sent concurrently: one connection is opened for each priority
level, and the number of high-priority connections is addition-
ally controlled by a parameter (we refer to NAI-MTCP1 for
NAI-MTCP with one high-priority connection, NAI-MTCP2 for
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Figure 7: Performance of NAI implementations compared. Graphs (a) and (b) show the relative proportions of high- and low-priority messages
delivered by ATP, NAI-TCP and NAI-MTCP for each workload, normalised by the total number of messages of the appropriate priority in the
workload. Graph (c) does the same for the three priority levels in the “random” workload. Each bar shows the average of five trials.

two high-priority connections, and so on). Behavior is otherwise
the same as TCP with timers (sends cannot be aborted), though
MTCP can terminate transmission of a message early if its timer
expires. NAI-MTCP consists of two thousand lines of C code,
compared to ten thousand lines for ATP.

C. Bulk data transfer

The raw performance of ATP was measured by a series of
throughput tests, using message sizes starting at 1 KB, and in-
creasing by powers of two up to 1 MB. Inter-arrival spacing was
negligible, and the duration of the test was set so that each test
transferred a total of 64 MB. All the messages were given a uni-
form callback timeout long enough to ensure that they would be
sent without the risk of being rejected, and bandwidth was set
to 512 KB/s. The experiments were conducted using only syn-
chronous or only asynchronous sends. For comparison, the same
experiments were run using kernel TCP with a single connection.

The results of these tests were extremely uniform for both
ATP and TCP. Both protocols had a peak throughput of
512 KB/s, with very little variation once the peak was achieved
(differences of at most one IP datagram from one second to the
next). The only significant difference between ATP and TCP
was in startup time: TCP doubles its send window size after ev-
ery round-trip, so it was able to reach the peak bandwidth within
a second. ATP is more pessimistic, only increasing the amount
of data it sends once per second; it took about ten seconds for
the bandwidth usage to reach 512 KB/s. Because the sender and
receiver have fast CPUs, the selection of synchronous or asyn-
chronous sends made no difference to ATP performance, despite
the fact that asynchronous calls allow pipelining of sends, while
synchronous calls are blocking.

D. Priority and deadline workloads

To compare the three implementations of NAI, we used six
workloads, each mixing messages of different priorities and call-
back timeouts, as shown in Table II. When workloads were
tested over ATP and NAI-MTCP, asynchronous message trans-
mission was used, but NAI-TCP supports only synchronous

test name priority size timer delay n
uniform high 4 KB 1 s 0.5 s 600

high 32 KB 4 s 2 s 150
prioritised high 4 KB 1 s 0.5 s 600

low 256 KB 16 s 8 s 38
reversed high 64 KB 16 s 8 s 75

low 4 KB 1 s 0.5 s 600
filesystem high 64 B 0.5 s 0.1 s 3000

low 64 KB 1 s 1 s 300
overload high 16 KB 1 s 0.25s 1200

low 64 KB 1 s 0.5s 600
random all 1-64 KB 0.5-4 s 0.5 s 600

Table II: Parameters for the priority and deadline tests. Messages in
each workload are divided by priority. The columns for “delay” and
“n” give the inter-arrival spacing and the number of messages, respec-
tively. Sizes and callback times for the random test are distributed uni-
formly within the ranges indicated.

transmission. As a consequence, ATP and NAI-MTCP are able
to preempt low-priority messages with higher-priority ones.

All of the workloads have at least two classes of messages,
a high-priority and a low-priority class. The objective of these
tests is to measure how many high-priority messages each pro-
tocol can deliver before their send timers expire. A secondary
consideration is how many low-priority messages are delivered,
since a trivial protocol might refuse to deliver all low-priority
messages! The “uniform” test sends all messages at the high
priority, while the “prioritised” test sends small messages at high
priority and larger ones at low priority. The “reversed” test re-
verses these priority assignments. The “filesystem” workload is
intended to model a mixture of large file chunk retrievals and
cache validation calls, as might be encountered in a typical dis-
tributed file system. The “overload” test sends messages at a
very high data rate. Finally, the “random” test is unusual in
that characteristics for its messages were generated randomly ac-
cording to a uniform distribution, and priorities were randomly
selected from low, medium or high levels (resulting in 205, 191
and 204 messages respectively). All the tests use the trace of
bandwidth described earlier, which varies bandwidth between 0
and 200 KB/s, and lasts for five minutes. While these workloads
are not realistic, together they serve to provide an indication of
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how the three NAI implementations perform under various con-
ditions.

Figures 7(a) and 7(b) plot the results of the first five tests, ac-
cording to message priority. In the uniform and reversed tests,
there is no prioritisation, or the benefit of prioritisation is small,
due to large timer values for high-priority messages. Here the
differences between the implementations is minor. However, in
cases where there is significant contention for bandwidth (the
filesystem and overload tests, and to a lesser extent, the priori-
tised test), ATP performs the best, since it is able to devote all
available bandwidth to sending high-priority messages. In con-
trast, NAI-TCP ignores priorities, and NAI-MTCP always de-
votes one connection to low-priority messages (though the more
high-priority connections it has, the less bandwidth low-priority
messages will receive).

Comparing the performance of ATP and NAI-MTCP reveals
the disadvantage of the MTCP design: it is subject to contention
between the concurrent streams, and the best number of streams
to assign to high-priority messages varies for different work-
loads. The prioritised test delivers roughly the same number
of messages irrespective of the number of high-priority streams,
but the performance for the reversed test degrades with more
streams, while that of the overload test increases. The critical
factor is whether transmitting multiple messages concurrently
can result in all of them being dropped when their send timers
expire. The file system and overload workloads demonstrate this
phenomenon most strongly, as ATP significantly outperforms
NAI-MTCP because it always sends messages serially. It can
also vary the order of message transmission, and interrupt trans-
mission of a low-priority message when a higher-priority mes-
sage arrives. The poor performance of NAI-MTCP in delivering
low-priority messages in the overload test is due to the fact that
NAI-MTCP is unable to discard a message early if it is undeliv-
erable before its timer expires: without estimating the available
bandwidth, the protocol cannot avoid wasting bandwidth on such
a message.

Figure 7(c) shows the results for the “random” workload.
NAI-TCP slightly outperforms ATP at two priority levels: here
the fact that it ignores priorities proves to be a benefit, since it
does not preempt messages and so does not devote bandwidth to
a low-priority message, only to discard it when a higher-priority
message arrives. NAI-TCP outperforms ATP by 2.5% in deliv-
ering high-priority messages, due to ATP rejecting messages at
points where it underestimates the current bandwidth. As in the
filesystem test, NAI-MTCP’s use of multiple streams results in
multiple messages being transmitted concurrently.

To summarise, in most of the cases considered, both NAI-MTCP
and ATP represent an improvement over NAI-TCP in the propor-
tion of high-priority messages delivered. However, ATP is able
to outperform NAI-MTCP by a factor of 30% or more for some
workloads, including network communication typical of a dis-
tributed file system. ATP is also able to abort a message early
when it discovers that insufficient bandwidth exists to deliver it
before its callback timer expires. Additionally, as we have shown
in Section IV-A, there are conditions under which TCP fails to

provide a fair bandwidth division between concurrent streams,
which may undermine the effectiveness of the callback timer im-
plementation in NAI-MTCP.

VI. RELATED WORK

While there has been a great deal of research in adapting ap-
plications and protocols to variations in network characteristics,
and in bandwidth-division algorithms, for the sake of brevity we
will mention only a few related projects.

We have already proposed web browsing [2] and remote file
systems [4] as specific applications which can adapt to band-
width availability; several systems provide more general adap-
tation mechanisms to applications. Odyssey [3] allows appli-
cations on a mobile host to adapt to changes in availability of
many kinds of resources; the bandwidth callback mechanism in
ATP is copied from Odyssey’s upcalls. Rover [14] focuses on
placing components of mobile applications to control communi-
cation between mobile clients and servers. ATP has some simi-
larities to Rover’s Queued RPC. HATS [15] regulates the trans-
mission of documents over a bandwidth-constrained link, divid-
ing them into hierarchies of data units and allowing policies for
scheduling retrieval of particular types of data units to be set for
the entire system.

ATP incorporates a simple scheme for a host to determine the
bandwidth available to it on a wireless link; more sophisticated
schemes exist, particularly for estimating bandwidth along a path
in a wide-area network [16], [17]. The Odyssey system incorpo-
rates a scheme for determining available bandwidth by compar-
ing the expected time to transmit and acknowledge a message
with its actual transmission time [18].

The problems with bandwidth allocation between multiple
flows discussed in Section IV-A are not new. T/TCP [19] and
TCP Fast Start [20] improve TCP performance for small data
transfers by caching and reusing connection state. Henderson et
al [21] have investigated the effects of TCP algorithms on band-
width allocation between concurrent connections. Congestion
Manager [10] and Ensemble-TCP [22] share state information
between connections to a remote host and allow the aggregate
bandwidth to be divided among state-sharing connections by a
priority mechanism. TCP Nice [23] adjusts TCP’s congestion
control algorithm to ensure that “background” TCP flows have
lower priority than regular flows. These systems improve per-
formance without compromising TCP congestion control. In
contrast, ATP aims to provide an mechanism which allows ap-
plications to adapt bursty network communication to bandwidth
availability, and to express timing requirements. ATP over TCP
allows ATP to be used in a WAN while remaining TCP-friendly.

VII. CONCLUSION

We have described NAI, a network-aware API for adaptive ap-
plications running on a wireless host, which allows an applica-
tion to be informed of the state of the network and the messages
it sends, and to adjust its behavior accordingly. We have also
described our ATP implementation of NAI and how it adjusts to
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changes in bandwidth, as well as demonstrating that an applica-
tion using ATP can accurately match its “mode of operation” to
the available bandwidth. Finally, we have compared alternatives
for implementing NAI: using a bandwidth estimator and a reli-
able datagram protocol over UDP (ATP), or alternatively, over
multiple TCP channels (MTCP). We favor the ATP implementa-
tion because it has superior performance and predictability, but
in settings where UDP is inappropriate, the MTCP implemen-
tation is an acceptable alternative, despite the contention effects
described in Section IV-A.

As we have illustrated in Section IV-D, ATP enables a high
quality of adaptation for applications, and adaptation using pri-
orities can provide better performance than a traditional modal
adaptation scheme. The fundamental premise motivating our
work has been that this type of priority-driven adaptation is vi-
tal in developing more intelligent mobile applications, and ATP
appears to be a suitable and effective basis on which to build
them.

Future work on ATP includes comparing the appropriateness
of using TCP against the advantages of SPP (our reliable data-
gram protocol), in order to adapt ATP to operate in a wide-area
network. We also intend to investigate techniques for making
ATP’s bandwidth estimator more accurate and responsive in de-
tecting bandwidth increases. ATP is currently being used in the
development of an adaptive distributed file system for mobile
clients.
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