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Abstract— We consider a network of rechargeable sensors,
deployed redundantly in a random sensing environment, and
address the problem of how sensor nodes should be activated
dynamically so as to maximize a generalized system performance
objective. The optimal sensor activation problem is a very
difficult decision question, and under Markovian assumptions on
the sensor discharge/recharge periods, it represents a complex
semi-Markov decision problem. With the goal of developing a
practical, distributed but efficient solution to this complex, global
optimization problem, we first consider the activation question
for a set of sensor nodes whose coverage areas overlap completely.
For this scenario, we show analytically that there exists a simple
threshold activation policy that achieves a performance within
a factor of 3

4
of the optimum over all possible policies. We

extend this threshold policy to a general network setting where
the coverage areas of different sensors could have partial or
no overlap with each other, and show by simulations that the
performance of our policy is very close to that of the globally
optimal policy. Our policy is fully distributed, and requires the
sensor nodes to only keep track of the node activation states in its
immediate neighborhood. We also consider the effects of spatial
correlation on the performance of the threshold activation policy,
and the choice of the optimal threshold.

I. INTRODUCTION

A. Background and Motivation

Due to major technological innovations in recent years,
development of tiny, low-cost sensor devices has become pos-
sible. Such sensor devices can be deployed in large numbers in
different environments for monitoring and data gathering pur-
poses [1]. These sensor devices, although cheap, are typically
unreliable. Moreover, sensor devices are limited by battery
energy. Therefore, a sensing device can remain powered on
(and be sensing) only for a limited amount of time, until it
runs out of battery energy [12]. In many scenarios, sensors
can be recharged, but recharging is often a very slow process
and the rate of recharging could be significantly less than the
rate of energy depletion during the sensing period. As a result,
a sensor could need to spend most of its lifetime in the “off”
state, when it is not sensing, but recharging. These factors
motivate redundant deployment of sensors to cover the area
of interest. Each sensor being unreliable, sensing reliability
increases if more number of sensors are sensing the same area
at the same time. If larger number of sensors are deployed, it is
likely that more number of these sensors would remain charged
(and hence can be used for sensing) at any given time. Thus the
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overall system performance would typically improve (possibly
with diminishing returns) with a more redundant deployment
of sensors.

We consider the scenario mentioned above, where sensors
have been deployed redundantly in the area of interest. We
assume that sensor nodes involved in sensing get discharged
after a certain duration of time, and need to be recharged
till they can start sensing again. We consider the decision
problem of when the recharged sensors should be activated
(i.e., switched on) so as to maximize the long-term utility of
the system.

B. Problem Formulation

We assume that sensors are energy-constrained, but
rechargeable, and at any instant of time, each sensor could
be in one of three states: i) active ii) passive, or iii) ready. In
the active state, the sensors are powered on and are sensing.
A sensor in the active state suffers a gradual depletion of
battery energy, and enters the passive state when its battery is
completely discharged. Sensors that are passive are powered
off, and are simply recharging their batteries. When its battery
is completely charged, the sensor enters the ready state.
Sensors in the ready state do not participate in sensing, and
wait to get activated. Figure 1 explains the three different
states, and the transitions between them.

Let discharge time denote the time a sensor spends in the
active state, and recharge time denote the time a sensor spends
in the passive state. In a realistic sensing environment, the
discharge and recharge times will depend on various random
factors. Sensors can transmit information (resulting in energy
usage) on the occurrence of “interesting” events, which may
be generated according to a random process. Therefore in our
system model, we assume that the discharge and recharge
times are random, although we study the special case of
deterministic discharge/recharge times as well.
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Although a sensor can power itself off during the ready
state, it has to wake up periodically and exchange messages
with its neighbors to keep track of the system state in its
neighborhood. Therefore, in reality, we would expect that
energy will be drained even in the ready state, but probably
at a fairly steady rate (possibly due to polling its neighbors
to check out the system activation state). However, the energy
discharge rate in the ready state can be expected to be much
slower than the discharge rate in the active state.

We assume that the performance of the system is character-
ized by a continuous, non-decreasing, strictly concave function
U satisfying U(0) = 0. More specifically, U(n) represents
the utility derived per unit area, per unit time, from n active
sensors covering an area. Note that different sensors can be
located at different points in the overall physical space of
interest, and the coverage patterns of different nodes can be
different. Therefore, the coverage areas of different sensors
will typically be different. This implies that at any time,
utilities in different parts of the area of interest can differ
significantly from one another.

Note that the strict concavity assumption merely states the
fact that the system has diminishing returns with respect to
the number of active sensors. As an example of a practical
utility function, consider the scenario where each sensor can
detect an event with probability pd. If the utility is defined
as the probability that the sensing system is able to detect an
event, then U(n) = (1− (1−pd)n), where n is the number of
sensors that are active. Note that this utility function is strictly
concave, and satisfies U(0) = 0.

We are interested in maximizing the time-average utility
of the system. Let A denote a generic area element in the
physical space of interest. Let nP (A, t) denote the number
of active sensors that cover area element A at time t, under
policy P . The time-average utility under policy P , is given by

lim
t→∞

1
t

∫ t

0

∫
A
U(nP (A, t)) dA dt . (1)

In Euclidean coordinates system, dA = dx dy, and
nP (A, t) = nP (x, y, t), in the above expression. The decision
problem that we consider in this paper is that of finding P so
that the objective function in (1) is maximized.

As mentioned before, our decision problem is that of
determining how many sensors to activate at any time, from
the set of ready sensors. Note that if we activate more sensors,
we gain utility in the short time-scale. However, if the number
of active sensors is already large, since the utility function
exhibits diminishing returns, we may want to keep some of
the ready sensors “in store” for future use. In fact, as we see
later, the performance results for policies studied in this paper
justifies this intuition.

C. Problem Challenges and Basic Approach

The stochastic nature of charging and discharging time of
sensors makes the determination of optimal activation policies
very hard in a general setting. Further, spatio-temporal correla-
tions imply that at any point in time, the optimal activation pol-
icy for a sensor might depend on the history of the states of all

the sensors in the network. Although under specific cases the
optimal policies may be formulated as semi-Markov decision
problem, determining optimal policies can be computationally
prohibitive. Since sensors are energy constrained we seek
policies that can be implemented in a distributed manner with
minimal information and computational overhead. Therefore,
we focus on simple threshold-based policies (defined precisely
later in the paper) and examine their performance.

To simplify the analysis and obtain fundamental perfor-
mance insights, we examine the performance of threshold
policies for a system of sensors whose coverage areas overlap
completely with each other. In this case the objective function
in equation (1) reduces to a single integral over the time
domain. Under Markovian assumptions we derive tight bounds
on the performance of threshold policies for two different
lifetime correlation models of the sensor nodes. These per-
formance bounds motivate our study of the performance of
threshold based policies in a very general network setting,
where coverage areas of different sensors could have partial,
complete or no overlap with each other. Results from our
extensive simulation studies show that even in this case, the
performance of threshold activation policies is very promising.

D. Contribution of this Work

Our problem formulation is novel, and formalizes a prac-
tically important problem which has not yet received its due
attention. As is the case in reality, we assume that the discharge
and recharge times of the sensors are random. We consider two
extreme correlation models of the discharge/recharge times
of the different sensors: one in which these times are highly
correlated, and the other in which these times are independent
of one another. For the sake of analytical tractability, we
first consider the case where sensor nodes have coverage
areas that are completely overlapping. Assuming that the
discharge/recharge times are exponential, we formulate the
problem as a continuous-time Markov decision problem and
provide a procedure for determining the optimal policy. Since
the associated computation complexity is significant, we focus
on the class of threshold decision policies. Threshold policies
yield closed-form expressions, and the optimal threshold pol-
icy can be computed efficiently. We show that the time-average
utility of the optimal threshold policy is within a factor of 3

4
of the best possible performance, for both correlation models.
Moreover, we show that correlation of the discharge/recharge
times of the sensors degrades performance at all threshold
values. Through numerical studies, we also show that the
performance of the optimal threshold policy is very close
to the best achievable performance. Subsequently, we extend
our threshold based activation policy to a general network
setting where the coverage areas of sensors can overlap only
partially. The threshold policies derived for this scenario can
be implemented by sensors in a distributed manner, based
only on information about the local network state. Through
extensive simulation studies, we show that the performance of
our policy is very close to that of a globally optimal policy.
Therefore, threshold policies allow us to obtain near-optimal
solutions to our complex decision problem in an efficient
manner.

0-7803-8968-9/05/$20.00 (c)2005 IEEE



E. Related Work

To the best of our knowledge, the problem of adaptive acti-
vation of rechargeable sensors in a dynamic sensing environ-
ment has not been addressed so far in the literature. We outline
here some of the important work on energy-efficient MAC
and adaptive wakeup of sensors, although these works only
consider energy-constrained, but non-rechargeable sensors. A
discussion on the importance of energy management in adhoc
and sensors networks, along with a description of various
performance objectives, is outlined in [12]. Energy-efficient
MAC protocols are studied in [5], [6], [14]. The problem of
minimizing power consumption during idle times is addressed
in [4], [9], [13]. In [3], the authors use occupancy theory to
analyze the effect of switching off idle nodes on the network
lifetime. In [10], the effects of power conservation, coverage
and cooperation on data dissemination is investigated for a
particular data sharing architecture.

F. Paper Organization

The paper is structured as follows. In the next section, we
consider a system of sensors with fully-overlapping coverage
areas, and show that simple threshold policies can achieve
near-optimal performance in this scenario. In Section III, we
extend the threshold activation policy outlined in Section II
to a more general scenario where sensor coverages may not
overlap completely.

II. NODE ACTIVATION POLICIES WITH COMPLETE

COVERAGE OVERLAP

In this section, we address our node activation decision
problem for a system of sensors whose coverage areas overlap
completely with each other.

A. System Model and Assumptions

We consider a system of N sensors covering the same area.
We assume that the discharge and recharge times of each
sensor are random variables.

Assumption 1: The discharge time and recharge time of any
sensor are exponentially distributed with means 1/µ1 and 1/µ2

respectively. Moreover, µ1 ≥ µ2.
Assumption 2: The energy level of a sensor does not change

in the ready state.
The exponential model of the discharge/recharge times

is assumed for analytical tractability. Moreover, the optimal
policies under this assumption depend only on the number of
sensors in the different states in the system, and not their exact
energy levels. Without Markovian properties, the system can
be very difficult to analyze, and implementing the optimal
decision policies (if they can be obtained) would require
more detailed system information and additional overhead.
The assumption µ1 ≥ µ2 is based on the observation that
the recharging process in batteries is typically slower than the
discharging process.

Assumption 2 basically states that a sensor remains in the
fully charged state as long as it remains in the ready state. In
reality, we would expect that energy will be drained even in the

ready state, but probably at a fairly steady rate, as discussed
earlier. Since the energy discharge rate in the ready state can
be expected to be much slower than the discharge rate in the
active state, it is not considered in our current analysis.

B. Problem Statement

Let nP (t) denote the number of sensors in the active state at
time t under policy P . Since the coverage areas of all sensors
are completely overlapping, the optimization problem can be
posed as that of finding a policy P that minimizes Ū(P ),
where Ū(P ) is defined as

Ū(P ) = lim
t→∞

1
t

∫ t

0

U(nP (t))dt . (2)

We assume that switching decisions can be taken at any
instant of time. Clearly, these decisions would need to be taken
only when the state of the overall system changes, i.e., the
number of the sensors in the active, passive or ready states
changes. In other words, these decisions need to be taken when
some sensor makes a transition from the active to the passive
state, or some sensor makes a transition from the passive to
the ready state. It is worth noting here that although we will
address our problem in this case from the perspective of a
centralized decision maker, the decision policy that we develop
can easily be implemented in a decentralized manner.

C. Sensor Lifetime Models

As we discuss later in more detail, the performance of
decision policies depend considerably on how the discharge
and recharge times of sensors are correlated. We consider two
different correlation models of the discharge/recharge times of
the different sensors:
i) Independent Lifetime (IL) Model: In this model, sensors are
activated independently of one another, and all discharge and
recharge times of all sensors are mutually independent.
ii) Correlated Lifetime (CL) Model: In this model, the dis-
charge times of all sensors entering the active state at the
same time is the same. Similarly, the recharge times of all
sensors entering the passive state at the same time is the same.
The discharge (recharge) times of sensors entering the active
(passive) state at different times are independent of each other.

The two correlation models can be practically motivated in
the following way. If the data transmission by a sensor (which
is often the primary mode of energy expenditure) is indepen-
dent of that of other active sensors, then the system is better
represented by the IL model. However, in many scenarios,
the sensors could perform data transmission collaboratively; in
such a case, the CL model may be more appropriate. Note that
these two models represent two extreme forms of correlation,
and real-life situations can be expected to fall in between these
two extremes.

Note that the optimal time-average utility (computed over
all possible activation policies) could be different for the two
correlation models. We denote optimal time-average utility for
the IL and CL models as Ū∗

I and Ū∗
C , respectively.
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D. Threshold Activation Policies

Note that the set of all possible activation policies can
be very large, and the structure of these policies can be
very complex. Therefore, determining the optimal activation
policy for the IL and CL models, can be very difficult, and
evaluating the optimal time-average utilities, Ū∗

I and Ū∗
C , can

be computationally intensive. Therefore, we focus primarily
on threshold activation policies. A threshold activation policy
with parameter m, is characterized as follows: a ready sensor s
is activated if the number of active sensors does not exceed m
after s is activated; otherwise, s is kept in the ready state.
In other words, a threshold policy with parameter m tries
to maintain the number of active sensors as close to m as
possible. Note that with such a policy, the number of active
sensors can never exceed m, and there cannot be any ready
sensors in the system when the number of active sensors is less
than m. The time-average utility for threshold activation policy
with parameter m, are denoted by ŪT,I(m) and ŪT,C(m), for
the IL and CL models, respectively.

E. Analysis

In this section, we compare the performance of threshold
activation policies with respect to the optimal activation policy.
In the following, ρ = µ1

µ2
≥ 1. For simplicity of exposition,

we assume ρ is an integer, and N is divisible by (ρ + 1),
although our results can be generalized to the cases where
these assumptions do not hold.

1) Upper Bound on Ū∗
I and Ū∗

C: Since the optimal time-
average utility is difficult to compute, we obtain an upper
bound on it, and compare the performance of threshold poli-
cies with this bound.

Theorem 1: The optimal time-average utility for the two
correlation models, Ū∗

I and Ū∗
C , are both upper-bounded by

U( N
1+ρ ), i.e.,

Ū∗
I ≤ U(

N

1 + ρ
) and Ū∗

C ≤ U(
N

1 + ρ
) .

The proof of the above result involves concavity arguments
and Jensen’s Inequality [15] and the details are given in the
Appendix. Theorem 1 implies that the time-average utility
under any policy can not be greater that U( N

1+ρ ). Further,
the bound is achieved exactly when all the sensors have
deterministic discharge and recharge times of lengths 1/µ1

and 1/µ2, respectively. With random discharge/recharge times,
the bound may not be tight; however, as we show below, it is
fairly good bound in our case.

Now we derive worst-case bounds on the performance of
threshold policies with respect to the optimal policy, for the
two correlation models.

2) Threshold Activation Policies for the IL Model: Con-
sider a threshold activation policy with parameter m ∈
{1, 2, 3, ..., N}. Let the time-average utility of the system
for this threshold be denoted by ŪT,I(m). Then Ū∗

T,I , the
optimal threshold-based time-average utility for the IL model,
is defined as Ū∗

T,I = maxN
m=1 ŪT,I(m).

Next we state a result for the threshold policy with pa-
rameter N . Note that with a threshold of N , once a sensor

is completely recharged, it is immediately activated. In other
words, no sensor is kept in the ready state.

Theorem 2: The time-average utility at threshold N for the
IL model, ŪT,I(N), is lower-bounded by 1

2U( N
1+ρ ), i.e,

ŪT,I(N) ≥ 1
2
U(

N

1 + ρ
) .

The proof of the above result involves concavity arguments
and analytical approximations of the time average utility
function. Details are provided in the Appendix. Theorem 2
implies that with a threshold of N , the performance of the
system will be within 50% of the optimal performance over
all policies. Our numerical studies also show that the time-
average utility of the system with a threshold of N is usually
quite close to the optimal. However, the optimal threshold
could in general be much less than N . The best threshold
policy can be found by finding the maximum of ŪT,I(m) over
all m ∈ {1, 2, 3, ..., N}, using the expression in (5) listed in
the Appendix. Theorem 2, in conjunction with Theorem 1,
implies that the optimal threshold-based time-average utility,
Ū∗

T,I satisfies Ū∗
T,I ≥ 1

2 Ū
∗
I .

It is possible to obtain a stronger bound on the performance
of the optimal threshold policy for the IL model. The deriva-
tion of this bound uses results from the analysis of the CL
model, that we discuss next.

3) Threshold Activation Policies for the CL Model: Con-
sider a threshold activation policy with parameter m. We
assume that N is a multiple of m. Initially, all N sensors are
fully charged, and m of these are activated, and the remaining
N −m are in the ready state. It is easy to see that the sensors
will become grouped into c = N/m batches, each of size m,
and always move through the different states in these batches.
From our definition of a threshold activation policy, it follows
that at most one batch can remain active at any time.

Let SN denote the set of all factors of N , i.e., all integers
which divide N . Then Ū∗

T,C , the optimal threshold-based
time-average utility for the CL model, is defined as Ū∗

T,C =
maxm∈SN

ŪT,C(m).
Next we state an important bound on Ū∗

T,C .
Theorem 3: The optimal threshold-based time-average util-

ity for the CL model, Ū∗
T,C , is lower-bounded by 3

4U( N
1+ρ ),

i.e., Ū∗
T,C ≥ 3

4
U(

N

1 + ρ
) .

The proof of Theorem 3 involves concavity arguments, and
analytical approximations of the time average utility function
(see Appendix for details). Theorem 3, together with Theo-
rem 1, implies Ū∗

T,C ≥ 3
4 Ū

∗
C . Therefore, the performance of

the best threshold policy is within a factor of 3
4 of the optimal

performance over all policies. The best threshold policy can be
found by finding the maximum of ŪT,C(m) over all m ∈ SN ,
using the expression in (8) listed in the Appendix. As we
describe later, our numerical results show that this maximum
is typically attained at some intermediate value of m. From
the proof of Theorem 3, it can be also shown that a threshold
of N

1+ρ achieves the bound of 3
4 .

4) Comparison of IL and CL Models: The following result
states that for every threshold m, the performance for the IL
model is at least as good as that for the CL model.
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Theorem 4: For any m ∈ SN , the time-average utility for
the IL model, ŪT,I(m), can be no less than the time-average
utility under the CL model, ŪT,C(m), i.e.,

ŪT,I(m) ≥ ŪT,C(m) .

The proof of Theorem 4 involves constructing equivalent
queuing networks corresponding to the IL and CL models.
We show that maximizing time average utility is equivalent
to minimizing the mean waiting times at certain stations in
these networks. Using prior results on the impact of pooled
servers on network throughput and Little’s law, we can prove
the desired result. An outline of the proof is given in the
appendix while the detailed proof is given in the technical
report [8]. Theorem 4 implies that the presence of correlation
amongst the discharge and recharge times of sensors in a batch
degrades system performance.

Theorems 3 and 4 allow us to improve our earlier bound
on the performance of the optimal threshold policy for the IL
model.

Corollary 5: The optimal threshold-based time-average
utility for the IL model, Ū∗

T,I , is lower-bounded by 3
4U( N

1+ρ ),
i.e.,

Ū∗
T,I ≥ 3

4
U(

N

1 + ρ
) .

Corollary 5, in conjunction with Theorem 1, implies Ū∗
T,I ≥

3
4 Ū

∗
I . Therefore, for both the IL and CL models, the perfor-

mance of the best threshold policy is within a factor of 3
4 of

the best achievable performance.

F. Numerical Results

In this section, we report results from numerical experiments
on the performance of threshold policies for the IL and CL
models under different parameter settings. For the utility func-
tion U(n) = 1−(1−pd)n, we conduct numerical experiments
for different values of pd(= 0.1, 0.9), N(= 16, 32, 48), and
ρ(= 3, 7, 15). To obtain the different values of ρ, we set
µ2 = 1 and vary µ1. For each parameter setting, we compare
the time-average utility of the system for different values of the
threshold. The detailed results from the numerical experiments
are described in [8].

1) Performance under IL and CL models: Figures 2 and
3 depict typical plots that describe the performance of the
threshold policies in the presence of low (Figure 2) and high
(Figure 3) probability of detection (pd). Note that the figures
show the time-average utilities ŪT,I(m) and ŪT,C(m) along
with U( N

1+ρ ), the upper bound on the maximum achievable
time-average utility. Figures 2 and 3 indicates that for both
the CL and IL models the time average utility is maximized
at an intermediate value of the threshold. Further, the optimal
threshold is distinct from N

1+ρ . For the CL model, when
operating with a threshold greater than the optimal, the time-
average utility decreases very rapidly with the threshold value.
However, for the IL model the decrease is gradual and in many
cases marginal. The rapid decrease in performance of the CL
model for thresholds other than the optimal emphasizes the
need to model and understand impact of correlation on system
performance.
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Fig. 2. Time-average utility for both models(µ1 = 7, µ2 = 1, N = 16, pd =
0.1)
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Fig. 3. Time-average utility for both models(µ1 = 7, µ2 = 1, N = 16, pd =
0.9)

Tables I and II list the ratio of the time-average utility
obtained at the optimal threshold (Ū∗

T,I or Ū∗
T,C) to the lower

bound of 3
4U( N

1+ρ ). Note that this ratio must lie between 1 and
4
3 . A value close to 1 indicates a tight lower bound, whereas
a value close to 4

3 indicates that performance of the optimal
threshold policy is close to the best achievable performance.

Table I indicates that for low values of the probability of
detection pd, the time average utility obtained by the optimal
threshold policy for the CL model is very close to the lower
bound. However, performance of the optimal threshold policy
for the IL model is fairly close to the maximum value U( N

1+ρ ).
Table II indicates that for high values of the probability of
detection pd, the time average utility obtained by the optimal
threshold policy for both models is very close to the maximum
value U( N

1+ρ ), although the performance for the IL model
is slightly better, as expected. In summary, in most cases,
the optimal threshold policies yield performance that are very
close to that maximum achievable performance. When this is
not the case (for instance, for the CL model and low values
of pd), the performance is fairly close to our lower bound
of 3

4U( N
1+ρ ). Further, the numerical experiments also indicate

that our bounds are fairly robust to the choice of N and ρ.
2) Distribution Independence: Simulations were carried out

for the IE model with recharge/discharge times randomly dis-
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N=16 N=32 N=48

ρ=3 1.29 1.30 1.31
ρ=7 1.28 1.29 1.29
ρ=15 1.27 1.28 1.28

(a) IL Model

N=16 N=32 N=48

ρ=3 1.06 1.06 1.06
ρ=7 1.14 1.09 1.09
ρ=15 1.22 1.16 1.17

(b) CL Model

TABLE I

RATIO OF OPTIMAL THRESHOLD-BASED TIME AVERAGE UTILITY AND LOWER BOUND, FOR pd = 0.1.

N=16 N=32 N=48

ρ=3 1.33 1.33 1.33
ρ=7 1.24 1.33 1.33
ρ=15 1.14 1.25 1.32

(a) IL Model

N=16 N=32 N=48

ρ=3 1.31 1.32 1.33
ρ=7 1.21 1.32 1.33
ρ=15 1.14 1.21 1.31

(b) CL Model

TABLE II

RATIO OF OPTIMAL THRESHOLD-BASED TIME AVERAGE UTILITY AND LOWER BOUND, FOR pd = 0.9.

tributed under various different distributions viz Beta, Gamma,
Uniform. The performance of threshold activation policies
was measured by computing the time-average utility. It is
observed that the performance of a threshold activation policy
is independent of the distribution of the recharge and discharge
times. This can be inferred by observing the performance of
the threshold activation policies under the various distributions
with same mean and variance, as shown in Figure 4.

0 2 4 6 8 10 12 14 16

0.1

0.12

0.14

0.16

0.18

0.2

Threshold (m)

T
im

e 
A

ve
ra

ge
 U

til
ity

 (
U

th
)

Beta
Gamma
Uniform
Upper bound

Fig. 4. Time-average utility plot for various distributions with same mean
(µ1 = 7, µ2 = 1) and variance (= mean2/3)

The simulation results also indicate that the time average
utility increases with decrease in the variance of the recharge
and discharge times.

III. NODE ACTIVATION POLICIES WITH PARTIAL

COVERAGE OVERLAP

In a realistic deployment scenario, nodes may be deployed
at random, and therefore, nodes will typically cover different
areas in the physical space of interest. In other words, the
coverage areas of two sensors may overlap only partially,
or may not overlap at all (i.e., be disjoint). In this section,
we extend our threshold activation policy to this very general
scenario.

As mentioned before, the case of partial coverage overlap
is very difficult to model and analyze, even for the special
class of threshold policies. In this section, therefore, we will
try to develop a solution heuristically, based on the insights
obtained for the complete coverage overlap scenario. We then
show, through extensive simulations, that our solution yields
a performance trend that is similar to that in the case with
complete coverage overlap. In particular, we observe that the
performance achieved still satisfies the three-fourth bound with
respect to the upper bound on the optimum over all policies.

A. Distributed Node Activation Algorithm

To motivate our distributed activation algorithm, let us
assume that a sensor i wants to maintain a utility of U(mi)
per unit area per unit time in its coverage area. In other words,
if the coverage area of the sensor is denoted by Ai, then the
sensor targets to derive a utility of |Ai|U(mi) per unit time.
When the sensor is in the ready state, then at any decision
instant, the sensor computes the current utility per unit time
in its coverage area. If the current utility is less than the
targeted utility, then the node activates itself; otherwise, the
node remains in the ready state until the next decision instant.

A sensor can compute the utility derived from its coverage
area in the following manner. For a generic area element A ∈
Ai, let n(A, t) denote the number of sensors covering A at
time t. Then the utility per unit time in the coverage area of
node i is calculated as∫

Ai

U(n(A, t)) dA . (3)

Assume that node i can communicate with all nodes whose
coverage areas overlap with its own coverage area. Then the
sensor can periodically poll those neighbors to know their
activation state. Assuming that the sensor i knows the coverage
patterns of those neighbors, it can compute the targeted utility
by evaluating the expression in (3). Therefore, the proposed
algorithm can be realized in a distributed setting based only
on local information.
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Note that the algorithm is motivated by the threshold
activation policy discussed in the previous section, and in the
case of complete coverage overlap, it reduces to a distributed
implementation of the threshold policy described earlier.

In practice the decision interval needs to be chosen carefully
to ensure that not too much energy is wasted in the ready
state by periodic wakeup and polling, while guaranteeing good
performance.

The thresholds mi can be defined globally or locally, and
accordingly we have two variants of our policy:
i) Global threshold policy: In this case, the mi = m ∀i, where
the fixed threshold m is chosen appropriately.
ii) Local threshold policy: In this case, the mi can be different
for each i, depending on the local neighborhood of the
individual sensor nodes.

In Section III-D, we comment on the appropriate choice of
the local and global thresholds, to yield optimum performance.
We can intuitively expect the local threshold policy to perform
better, particularly in scenarios where there is a high spatial
variance in the density of nodes in the deployment region. For
the local threshold policy, nodes in areas with larger density
can have a higher threshold, while nodes in a sparser region
can set its threshold to a lower value. However, if the nodes
are deployed more or less uniformly, then both these policies
are observed to perform very well in simulations, although
local threshold policy performs slightly better.

B. Upper Bound on Optimal Time-average Utility

Next we state an useful upper bound on the optimal time-
average utility derived from a sensor network with partial
coverage overlap. We assume that the mean discharge and
recharge times are 1

µ1
and 1

µ2
respectively, ρ = µ1

µ2
≥ 1. We do

not make any assumption on the distribution of the discharge
and recharge times. Let A denote a generic area element in
the physical space of interest, and N(A) denote the number
of active sensors that cover area element A.

Corollary 6: The optimal time-average utility for a general
network of sensors is upper-bounded by∫

A
U

(
N(A)
1 + ρ

)
dA . (4)

The above result can be proved following the same line
of analysis as in the proof of Theorem 1, and is therefore
omitted here. Since the optimal policy is difficult to formulate
and compute in this case, we will compare the performance
of our algorithm with respect to this upper bound.

C. Sensor Lifetime Models

We consider five different lifetime models for this scenario.
The first two models (independent and correlated lifetime
models) are extensions of the IL and CL models considered
for the complete coverage overlap case. The next two mod-
els (independent and correlated event-based lifetime models)
are event-based. We assume that discharging and recharging
depends on events that occur randomly in the deployment
region(in a way described below). Finally, for the sake of
comparison, we also consider a deterministic lifetime model,
where the discharge and recharge times of each sensor are

fixed.
i) Independent Lifetime Model: The discharge and recharge
times of the sensors are exponential i.i.d with means 1/µ1

and 1/µ2 respectively.
ii) Correlated Lifetime Model: The discharge and recharge
times of the sensors are exponential with means 1/µ1 and
1/µ2 respectively. However, the discharge (recharge) times of
all sensors entering the active (passive) state at the same time
is the same. The discharge (recharge) times of sensors entering
the active (passive) state at different times are independent of
each other.
iii) Independent Event-based Lifetime Model: Events are as-
sumed to occur randomly in the physical space of interest,
and a sensor node gets discharged (by a fixed amount q) only
when an event occurs within its coverage area. Events are
assumed to occur according to a Poisson process, and are
uniformly distributed in the area of interest. A sensor node,
on activation, is assumed to have a total energy of Q units.
Therefore, an active sensor gets fully discharged once Q/q
events have occurred within its coverage area. The recharge
process is modelled similar to the discharge process. A passive
node gets fully recharged once a certain number of random
“recharge events” have occurred in its coverage area. The mean
inter-event times for discharging and recharging are chosen so
that the mean discharge and recharge times of sensors are
equal to 1/µ1 and 1/µ2 respectively.
iv) Correlated Event-based Lifetime Model: Here the network
is divided into imaginary blocks of equal sizes. As in the
case of the independent event-based lifetime model, events
occur according to a poisson process, and are assumed to
be uniformly distributed in the area of interest. However, an
event occurring anywhere in the block affects all the sensors
located in this block in a similar manner. This introduces
spatial correlation between the discharge and recharge times
of the sensors. The degree of spatial correlation depends on
the sizes of the blocks. In this model too, the mean inter-event
times are chosen so that the mean discharge and recharge times
of nodes are equal to 1/µ1 and 1/µ2 respectively.
v) Deterministic Lifetime Model: The discharge and recharge
times of the sensors are fixed and are equal to 1/µ1 and 1/µ2

respectively.
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D. Simulation Results and Discussion

The performance of the node activation algorithm described
above is evaluated using simulations for a wide range of
parameters for both the cases of global and local thresholds.
In the representative simulation results presented here, the
simulation setup and the parameters used are as follows. A
total of N = 52 sensors, each having a circular coverage pattern
of radius 12 units, are thrown uniformly at random in an area
of size 50×50. With these parameters, the mean coverage of
the network (N̄ ), defined as the average number of sensors
covering any point in the deployment region, is observed to
be approximately 9.1. For the event-based lifetime models, we
use Q/q = 100. For the correlated event based model, number
of blocks is set to 4. The utility function used is given by
U(n) = 1− (1− pd)n where pd = 0.1. Also the upper bound
on the maximum achievable utility in this case is calculated
to be 0.159511.

Figures 5 and 6 show the performance of the various models
for global and local thresholds. Let us define α, the local
threshold parameter, as α = mi/( ni

1+ρ ), where ni is the
number of sensors (including i) that cover the point where
i is located. Note that in Figure 6, the time-average utility is
plotted against this local threshold parameter α.

From Figure 5, we observe that with a fixed global threshold
of m = N̄/(1 + ρ) (≈ 2 in this case), the time average utility
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Fig. 8. Correlated Events model performance with local thresholds

is greater than three-fourth of the upper bound. Similarly,
from Figure 6, we observe that with a local threshold of
mi = ni/(1 + ρ) (the case of α = 1), the time average utility
is greater than three-fourth of the upper bound as well. For all
of the event models considered, we see that this threshold
value also achieves the close to best performance attained
over all thresholds. Simulations performed for other network
configurations yielded similar results. The performance for the
deterministic model is close to the optimal for the threshold
of mi = ni/(1 + ρ) and m = N̄/(1 + ρ) for the local and
global threshold policies respectively.

Note that the Figures 5 and 6 also show that the performance
at higher thresholds drops significantly as the degree of spatial
correlation in the sensor lifetimes increases. Figures 7 and 8
also demonstrate this fact more clearly. Note that the degree
of spatial correlation increases with fewer number of blocks
(i.e., with the increase in the block size). With the increase in
spatial correlation, the performance drops significantly for the
activation policy at higher thresholds.
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APPENDIX I: PROOF OUTLINES OF THEOREMS

Proof Outline of Theorem 1: The proof of the above
result involves concavity arguments and Jensen’s Inequality
[15]. Let f and p be measureable functions finite a.a. on
R. Suppose, that fp and p are integrable on R, p ≥ 0, and∫
p > 0. If φ is convex in an interval containing the range of

f , then Jensen’s inequality states that:

φ

(∫
R
fp∫

R
p

)
≤
∫

R
φ(f)p∫
R
p

.

Let n(t) denote the number of sensors in the active state
at time t. Since U(.) is concave, substituting φ = U(.),
f = n(t) and p = 1 in the above, Jensen’s Inequality implies
that:

U

(∫ T

0
n(t)dt
T

)
≥
∫ T

0
U(n(t))dt
T

Since, U(.) is continuous, we have:

lim
T→∞

U

(∫ T

0
n(t)dt
T

)
≥ lim

T→∞

∫ T

0
U(n(t))dt
T

Define ψi(t) such that ψi(t) = 1 if sensor i is in active state
at time t and ψi(t) = 0 if sensor i is in passive state at time
t.Then, continuity of U(.) also implies

lim
T→∞

U

(∫ T

0
n(t)dt
T

)
= U

(
lim

T→∞

∫ T

0
n(t)dt
T

)

= U

(
lim

T→∞

∫ T

0

∑i=N
i=1 ψi(t)dt
T

)

Since ψi(t) is positive and bounded,

lim
T→∞

U

(∫ T

0
n(t)dt
T

)
= U

(
lim

T→∞

i=N∑
i=1

∫ T

0
ψi(t)dt
T

)

= U

(
i=N∑
i=1

lim
T→∞

∫ T

0
ψi(t)dt
T

)

Further, since all sensors are identical, for any k

U

(
lim

T→∞

∫ T

0
n(t)dt
T

)
= U

(
N lim

T→∞

∫ T

0
ψk(t)dt
T

)

Since the times each sensor spends in active and passive states
are independent, with mean 1

µ1
and 1

µ2
, we have

1
1 + ρ

≥ lim
T→∞

∫ T

0
ψk(t)dt
T

where the equality holds if the sensor spends zero time in the
ready state. Therefore we have

U

(
N

1 + ρ

)
≥ U

(
lim

T→∞

∫ T

0
n(t)dt
T

)

This implies

U

(
N

1 + ρ

)
≥ U

(
lim

T→∞

∫ T

0
n(t)dt
T

)

≥ lim
T→∞

∫ T

0
U(n(t))dt
T

.

The above theorem implies that the time-average utility under
any policy can not be greater that U( N

1+ρ ).In particular, the
optimal time-average utility for the two correlation models,
Ū∗

I and Ū∗
C , are both upper-bounded by U( N

1+ρ ), thus proving
Theorem 1.
Proof Outline of Theorem 2: Using steady state Markov
chain analysis, the time-average utility of the system, ŪT,I(m),
can be computed as

ŪT,I(m) =
∑N

i=1 U(i)α(i,m)∑N
i=0 α(i,m)

, (5)

where α(i,m), i = 1, 2, ..., N , are defined as

α(i,m) =

{ (
N
i

)
ρ−i if i ≤ m,(

N
i

)
i!ρ−i

m!mi−m otherwise.
(6)

Using the above expressions, time average utility obtained
for a threshold of m = N is:

ŪT,I(N) =
N∑

i=0

U(i)
(
N
i

)
(1/ρi)

(1 + 1/ρ)N

We define w = N
ρ+1 and show that ŪT,I(N)

ŪT,I(w)
≥ 1

2 . We have

ŪT,I(N) =
N∑

i=0

U(i)
(
N
i

)
ρi(1 + 1/ρ)N

=
w∑

i=1

U(i)
(
N
i

)
ρi(1 + 1/ρ)N

+
N∑

i=w+1

U(i)
(
N
i

)
ρi(1 + 1/ρ)N
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But from the concavity of U(.) we have, U(k) ≥ (k/w)U(w)
for k ≤ w and U(k) ≥ U(w) for k > w. Hence

ŪT,I(N)
ŪT,I(w)

≥
w∑

i=1

(i/w)
(
N
i

)
(1/ρi)

(1 + 1/ρ)N

+
N∑

i=w+1

(
N
i

)
(1/ρi)

(1 + 1/ρ)N

≥ 1
2w

(w + 1)

[
w∑

i=1

(
N
i

)
(1/ρi)

(1 + 1/ρ)N

]

+
N∑

i=w+1

(
N
i

)
(1/ρi)

(1 + 1/ρ)N

≥ 1
2
. (7)

The result follows from (7) and Theorem 1.
Proof Outline of Theorem 3: Using steady-state Markov
chain analysis, the time-average utility of the system,
ŪT,C(m), can be computed as

ŪT,C(m) = U(m)

(
1 −

ρc

c!∑c
i=0

ρi

i!

)
. (8)

where c = N/m.
To prove the lower bound on ŪT,C(m̂), it is sufficient to

show that there exists an m̂, such that ŪT,C(m̂) = 3
4U
(

N
1+ρ

)
.

In particular, we show that the result holds for m̂ = N
1+ρ , by

considering two cases, namely ρ = 1 and ρ ≥ 2.

Case 1 (ρ = 1) :

Since ρ = 1, m̂ = N
1+ρ = N

2 and c = N
m̂ = 2. Hence,

ŪT,C(m̂) =

(
1 −

ρ2

2!∑2
i=0

ρi

i!

)
U

(
N

1 + ρ

)

=

(
1 + ρ

1 + ρ+ ρ2

2

)
U

(
N

1 + ρ

)

= 0.8U
(

N

1 + ρ

)

≥ 3
4
U

(
N

1 + ρ

)
Case 2 (ρ ≥ 2) :

Since ρ ≥ 2, m̂ = N
1+ρ ≤ N

3 and c = N
m̂ ≥ 3. Hence,

ŪT,C(m̂) =

(
1 −

ρc

c!∑c
i=0

ρi

i!

)
U

(
N

1 + ρ

)

≥
(

1 −
ρc

c!∑c
i=c−3

ρi

i!

)
U

(
N

1 + ρ

)

≥
(

1 − 1
4 + 2

ρ − 1
ρ2

)
U

(
N

1 + ρ

)

≥
(

1 − 1
4

)
U

(
N

1 + ρ

)

≥ 3
4
U

(
N

1 + ρ

)
.

Proof Outline of Theorem 4: Figure 9 provides a queuing
network representation of the IL model operating with a
threshold of m. It is easily seen that the Markov chain for this
queuing network is identical to that of the IL model described
earlier. Figure 10 provides a queuing network representation

Fig. 9. Queuing network representation for the IL model

of the CL model operating with a threshold of m. Again, it
can be seen that the Markov chain for this queuing network
is identical to that of the CL model described earlier. To

Fig. 10. Queuing network representation for the CL model

show that ŪT,I(m) ≥ ŪT,C(m) we construct the multi-class
queuing network model of an intermediate system shown in
Figure 11. There are m classes of customers with c customers
in each class. Each class of customer visits one of the
exponential m servers in station 1 (active sensors) and one of
the N exponential servers in station 2 (passive sensors). Note
that the behavior of each class of customers in the network
shown in Figure 11 is identical to that of the batches in the
network representation of the CL model. Further, like the
network representation of the IL model this network has N
customers. However, the m servers in station 1 of the network
in Figure 11 are dedicated – one to each class of customers.
Comparing networks in Figures 10 and 11 we note that the
probability of at least one of the m servers is busy (in Figure
11) is at least as much (if not greater) than the probability that
station 1 (in Figure 10) is busy. Further, comparing networks
in Figures 9 and 11 we note that the probability that all m
servers are busy is at least as much (if not greater) for the
network shown in Figure 9. This observation follows from the
result shown in [7] and [11] that state that pooling of servers
result in improved station utilization and throughput. These
two observations imply that ŪT,I(m) ≥ ŪT,C(m).
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Fig. 11. Queuing network model of intermediate system

APPENDIX II: OPTIMAL POLICY COMPUTATION IN THE

COMPLETE COVERAGE OVERLAP CASE

In this section we formulate the problem of determining the
optimal activation policy for the case of complete coverage
overlap. We describe a solution procedure and discuss the
associated computational complexity and motivate the need
to study threshold activation policies.

We represent the system state x ∈ X by the parameter tuple
(ax, sx), where ax denotes the number of available sensors
(active+ready) and sx denotes the number of active sensors.
Note that, since we assume that there are N sensors, ax =
0, . . . , N and sx = 0, . . . , ax. Since charging and discharging
lifetimes are assumed to be exponentially distributed, the
system in state x transitions to state y after an exponentially
distributed time with probability px,y(u) that depends on the
policy u executed. The objective is to find the optimal policy
U∗ that maximizes the time average utility given by

Ū = lim
T→∞

1
T
E

∫ T

0

g(x(t), u(t))dt. (9)

where g(x, u) = 1 − (1 − pd)n is the time utility gained per
unit time with n active sensors when the system is in state x.

Note that under these assumptions, the problem of finding
the optimal policy becomes a continuous time Markov decision
problem where the objective is to maximize the average
utility per stage. Properties of the state space and transition
probabilities enable us to restrict the search space for the
optimal policy. First, we note that the problem formulation
implies a finite space. Second, it can be shown that the
Markov chain resulting from every stationary policy would
be irreducible. Then it follows from Bertsekas [2](page 277)
that there exists a stationary policy u(x)∗ for x ∈ X that
yields the same utility as the optimal policy U∗ . Further,
under a stationary policy, the stochastic process X(t) forms
a regenerative process with finite expected cycle length and
therefore the time average utility can be represented in an
equivalent and more convenient form given by

Ū = lim
N→∞

1
E(tN )

E

∫ tN

0

g(x(t), u(t))dt. (10)

We define G(x, u) to be the single stage expected utility and
τ̄x(u) to be the expected transition time corresponding to
state x and policy u. Then by formulating the corresponding

stochastic shortest path problem [2] it can be shown that the
problem of finding the optimal stationary policy is equivalent
to finding the u∗(x) for x ∈ X such that

h∗(x) = min
u∈U(x)


G(x, u) − λ∗τ̄x(u) +

∑
y∈X

px,y(u)h∗(y)




(11)
The above set of equations can be solved for the vector h(x)∗

for x ∈ X and the scalar λ∗, the optimal average utility
Ū∗(x) for all states x ∈ X using techniques such as value
iteration, policy iteration or linear programming. The specific
values of τ̄x(u), and px,y(u) used in the solution procedure
would depend on the particular policy u executed in state x. To
illustrate the procedure, consider a particular stationary policy,
uα(x)∗ for x ∈ X , where

uα(x) = fα(ax) for 0 ≤ f(ax) ≤ ax. (12)

Corresponding to this policy, assuming sensor lifetimes are
independent, we have

τ̄x(uα(x)) =
1

fα(x)µ1 + (N − ax)µ2

px,y(uα(x)) =
fα(x)µ1

fα(x)µ1 + (N − ax)µ2

for (y) = (ax − 1, fα(ax − 1))

=
(N − ax)µ2

fα(x)µ1 + (N − ax)µ2

for (y) = (ax + 1, fα(ax + 1)
= 0 otherwise

Note that threshold policies and activation based policies are
subsets of the particular stationary policy chosen above. It
is not necessary that the particular stationary policy uα(x)∗

for x ∈ X , be optimal. Using policy iteration, we revise the
choice of the policy till we attain the optimal policy. First,
corresponding to the current policy choice, we find a hα(x)
and λα satisfying

hα(x)+λατ̄x(uα(x)) = G(x, uα(x))+
∑
y∈X

px,y(uα(x))hα(y)

(13)
for x ∈ X . Then we find a uα+1(x) such that

uα+1(x) = arg min
u∈U(x)


G(x, u) +

∑
y∈X

px,y(u)hα(y)


 (14)

We update hα(x) and λα till hα+1(x) = hα(x) and λα+1 =
λα+1. This terminates the policy iteration algorithm. It is
evident from the above procedure that significant computations
would be necessary in the improvement step of the policy
iteration procedure. The set of stationary policies although
finite is significantly large. Therefore, we restrict our research
to a set of simpler policies such as the threshold policies
and examine their performance in comparison to the optimal
policies.
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