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Abstract— We define “random trip", a generic mobility
model for independent mobiles that contains as special
cases: the random waypoint on convex or non convex
domains, random walk with reflection or wrapping, city
section, space graph and other models. We use Palm
calculus to study the model and give a necessary and
sufficient condition for a stationary regime to exist. When
this condition is satisfied, we compute the stationary regime
and give an algorithm to start a simulation in steady state
(perfect simulation). The algorithm does not require the
knowledge of geometric constants. For the special case of
random waypoint, we provide for the first time a proof and
a sufficient and necessary condition of the existence of a
stationary regime. Further, we extend its applicability to
a broad class of non convex and multi-site examples, and
provide a ready-to-use algorithm for perfect simulation.
For the special case of random walks with reflection or
wrapping, we show that, in the stationary regime, the
mobile location is uniformly distributed and is independent
of the speed vector, and that there is no speed decay.
Our framework provides a rich set of well understood
models that can be used to simulate mobile networks with
independent node movements. Our perfect sampling is
implemented to use with ns-2, and it is freely available
to download from http://ica1www.epfl.ch/RandomTrip.

I. INTRODUCTION

A. Mobility Models and Stationarity

Our goal is to provide a class of mobility models
(1) that is rich enough to accommodate a large variety
of examples and (2) whose simulation can easily be
mastered. The latter point is motivated by recent findings
about the random waypoint, an apparently simple model
that fits in our framework. The simulation of the random
waypoint poses a surprising number of challenges, such
as speed decay, a change in the distribution of location
and speed as the simulation progresses [16], [12], [14],
[8]. All of these observations are related to the existence
of a stationary regime. Camp, Navidi and Bauer [14]
point out that if the model has a stationary regime, it is
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important to simulate it in this regime; otherwise, if the
initial configuration is not sampled from the stationary
regime, the performance evaluation of a system under
study may be biased and non reproducible.

B. Perfect Simulation

A standard method for avoiding such a bias is to
(1) make sure the used model has a stationary regime
and (2) remove the beginning of all simulation runs in
the hope that long runs converge to stationary regime.
However, as we show now, the length of transients may
be prohibitively long for even simple mobility models.
Our example is the space graph explained in Figure 1.
There are a little less than 5000 possible paths; in
Figure 1 we show the distribution of the path used
by the mobile at time t, given that initially a path is
selected uniformly among all possible paths (i.e. the
mobile is initially placed uniformly among all nodes).
This was obtained analytically (see Appendix [4] for
details). Figure 1 illustrates that the transient period
may be long compared to typical simulation lengths (for
example 900 sec in [5]). A major difficulty with transient
removal is to know when the transient ends; if it may be
long, as we illustrated, considerable care should be used.
An alternative, called “perfect simulation", is to sample
the initial simulation state from the stationary regime.
For most models this is hard to do, but, as we show, this
is quite easy (from an implementation viewpoint) for the
random trip model. Perfect simulation for the random
waypoint was advocated and solved by Navidi and
Camp in [13] who also give the stationary distribution
(assuming location and speed are independent in the
stationary regime, an issue later resolved in [10] using
the Palm techniques in this paper).

C. The Palm Calculus Framework

The derivations in [13] involve long and sophisticated
computations. We use a different approach, based on
Palm calculus, a set of formulas that relate time averages
to event averages. Palm calculus is now well established,
but not widely used or even known in applied areas.
For a quick overview of Palm calculus, see [11]; for
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Fig. 1. Top: “Space Graph", a model proposed by Jardosh et al
[9]. A mobile starts from a randomly chosen circle and goes along
a shortest path towards another randomly chosen circle. Numerical
speed is constant = 1.25 m/s. Bounding area 1 km ×1 km. Bottom:
Probability distribution of the path used by a mobile at time t.
Initially, the path is chosen uniformly among all possible paths. x-
axis: path index, sorted by path length; y-axis: probability that this
path is used at time t for t = 50,100,300,500,1000,2000 seconds of
simulated time. Horizontal solid line: initial distribution; other solid
line: time-stationary distribution. The transient lasts for a long time.

a full fledged theory, see [1]. This framework allows
us to generalize the results in [13] to a broad class

of models, as discussed next. Incidentally, even for
the original random waypoint model, we provide new
elements: a proof that a stationary regime exists when
vmin > 0 and a sampling algorithm that, for complicated,
non convex areas, does not require a priori computation
of geometric integrals. More fundamentally, the Palm
calculus framework allows us derive simple sampling
algorithms for the generic random trip model – a task
that would be formidable without this tool.

D. Contributions of This Paper

As a first step towards our goal, we give a model
for independent mobiles (leaving group mobility models
for further study). The model is called “random trip".
In the absence of established properties of real mobility
patterns, it is not yet clear today what the require-
ments on a mobility model should be [6]. We focus
here on a model that is able to synthesize an a priori
assumed mobile behaviour. This leads to examples such
as city driving models (“Space Graph" [9], “City section"
or “Hierarchical random waypoint", called “restricted
random waypoint" in [3]), simple airplane circulation
models (“Random Waypoint on Sphere"), or the special
purpose “Fish in a Bowl" and “Swiss Flag". In some
cases, it is desirable to assume that node location is
uniformly distributed in steady-state; this is provided
by the two “Random Walk" examples and by “Random
Waypoint on a Sphere". We give a definition of the model
and a non exhaustive list of examples in Section II.

Our main contributions are:
• a generic model and a framework to analyze it;
• a proven necessary and sufficient condition for

a stationary regime to exist; a proof that when the
stationary regime exists it is unique. This appears to be
new even for the classical random waypoint;
• a generalization of random waypoint perfect simu-

lation to non convex areas;
• a sampling algorithm that does not require the

computation of geometric integrals;
• the proof that for three examples (random walk on a

rectangle with wrapping or reflection, random waypoint
on sphere) the node location is uniform. For the random
walk examples, the steady state is essentially the same
as the naive initialization (with uniform node placement)
and there is no speed decay. In contrast, there is speed
decay for random waypoint on a sphere.

We focus on perfect simulation and leave for a further
paper the study of convergence (and its rate) to the sta-
tionary regime when it exists. Due to space limitations,
we exhibit our results with most of the proofs delegated
to the appendix of the full version [4]. A notation list is
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given in the next section. Related work is described at
the end of the paper.

II. A GENERAL MOBILITY MODEL

We consider a generic family of models, defined by
the following framework.

1) The domain A is a closed, bounded, connected (not
necessarily convex) subset of R

2 or R
3.

2) P is a set of paths on A . A path is a continuous
mapping from [0,1] to A that has a continuous derivative
except maybe at a finite number of points (this is
necessary to define the speed).

For p ∈ P , p(0) is the origin of p, p(1) is its
destination, and p(u) is the point on p attained when
a fraction u ∈ [0,1] of the path is traversed.

3) Trip Selection Rule: A trip is the combination of
a duration and a path. The position X(t) of the mobile at
time t is defined iteratively as follows. There is a set Tn ∈
R, n ∈ Z of transition instants, such that T0 ≤ 0 < T1 <
T2 < .... At time Tn, a path Pn ∈P and a trip duration Sn ∈
R+ are drawn according to some specified trip selection
rule, specific to the model. The next transition instant is
Tn+1 = Tn +Sn and the position of the mobile is X(t) =
Pn( t−Tn

Sn
) for Tn ≤ t ≤ Tn+1.

The trip selection rule is constrained to choose a path
Pn such that Pn(0) = Pn−1(1). Further, we assume that,
with probability 1, the duration of the trip Sn is positive
(instantaneous transitions are not allowed).

4) Default Initialization Rule: at time t = 0, the
initial position, path, position on path, and remaining
time until the next transition are drawn according to
some specified default initialization rule. A common
default rule considers that time 0 is the first transition
instant (T0 = 0), and selects a path and trip duration
according to the trip selection rule. However, as shown
in Section I, this causes some problems, that are fixed by
using the perfect simulation initialization rule, described
in Section VI-B.

In addition, we do the following assumptions. They are
essential for our model to be tractable, while supporting
a very broad class of mobility models.
(H1) The trip selection rule depends on all past only
through the current mobile location Mn and the state of
a Markov chain In. Further, In depends on all past only
through the last state In−1. More precisely, In (the phase)
is defined on some enumerable set I ; it changes its value
at transition instants Tn. Given that the phase selected at
Tn is In = i, and given the mobile location Mn = m at
time Tn, the path Pn and the trip duration Sn are drawn
independently of all past until time Tn, with a distribution
that may depend on m and i but not on n; the new value

Notation List
• A (⊂ R

2 or R
3): model domain, connected and bounded

• d(m,n) length of shortest path in A from m ∈ A to n ∈ A ;
if A is convex d(m,n) = ‖m−n‖
• Tn: nth transition time, at which a new trip is defined
• In ∈ I ,Mn ∈ A ,Pn ∈ P ,Sn ∈ (0,∞): phase, starting point,
path, trip duration for the nth trip
• I(t)∈ I ,M(t)∈ A ,P(t)∈ P ,S(t)∈ (0,∞),X(t)∈ A : phase,
starting point, path, trip duration for the trip used by mobile
at time t, location at time t. X(Tn) = Mn and if Tn ≤ t < Tn+1

then I(t) = In, M(t) = Mn and S(t) = Sn.
• U(t) ∈ [0,1]: fraction of the current trip that was already
traversed. Thus U(t)S(t) is the time elapsed on the current
trip and the location of the mobile at time t is X(t) =
p(U(t)), with p = P(t). We assume that the trip is done
at a speed proportional to the default speed of the path, i.e.
if Tn ≤ t < Tn+1 then U(t) = t−Tn

Tn+1−Tn
= t−Tn

Sn• It follows that the speed vector of the mobile at a time
t that is not an end of trip is �V (t) = 1

S(t)
∂

∂u p(U(t)), with

p = P(t) and the numerical speed is V (t) =
∥∥∥�V (t)

∥∥∥.

• For some random variable Z, IE0(Z) is the “Palm ex-
pectation", which can be interpreted as the expectation,
conditional to the event that a transition occurs at time 0,
when the system has a stationary regime. IE0 denotes the
event average viewpoint [1], [11]. For example IE0(S0) =
IE0(S(0)) is the average trip duration; in contrast, when
the system has reached steady-state, IE(S(0)) = IE(S(t)) is
the average duration of a trip, seen from an observer who
samples the system at an arbitrary point in time. Both are
usually different because the observer is more likely to
sample a large trip duration.

of the chain In+1 is drawn in a way that depends only
on i.
(H2) Either of the following is true:

(H2a) (i) The distribution of location Mn+1 at time
Tn+1, conditional on all past phases until Tn, depends
only on the phase In and not on n. (ii) Moreover, there
exist renewal points defined as follows. The chain of
phases In has a set of selected transitions I∗ ⊆ I2 such
that the distribution of location Mn+1, given all past up
to time Tn and given (In, In−1) ∈ I∗, depends only on In;

or

(H2b) The distribution of location Mn at time Tn does
not depend on n, Mn is independent of In, and (Sn, In+1)
depends on all past only through In.
(H3) The Markov chain In is positive recurrent. For
example, this is true if I is finite and the graph of the
chain In is connected.

As we show next, these assumptions are verified by a
very large class of mobility models.
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Fig. 2. Random Waypoint on a non convex domain (Swiss Flag). A
trip is the shortest path inside the domain from a waypoint Mn to the
next. Waypoints Mn are drawn uniformly in the domain. On the figure,
the shortest path Mn,Mn+1 has two segments, with a breakpoint at
K; the shortest paths Mn−1,Mn and Mn−2,Mn−1 have one segment
each. M(t) is the current position.

III. EXAMPLES

We give a non exhaustive catalog of examples and
show that they all fit in our framework.

A. Classical Random Waypoint With Pauses.

This is the classical random waypoint model. A is
assumed to be convex (A is a rectangle or a disk in [8],
[6]). Paths are straight line segments: p(u) = (1−u)m0 +
um1 for the segment with endpoints m0 and m1. Pauses
are special cases of paths, when endpoints are equal:
p(u) = m0. There are two phases I = {pause,move}.
At a transition instant, the trip selection rule alternates
the phase from pause to move or vice versa. If the
new phase is pause, the trip duration Sn is picked
according to the density f 0

pause(s); the path Pn is a
pause at the current point. If the new phase is move,
the trip selection rules picks a point Mn+1 at random
uniformly in A , and a numerical speed Vn according to
the density f 0

V (v). A classical choice (uniform speed)
is f 0

V (v) = 1
vmax−vmin

1{vmin<v<vmax}. The trip duration is then

Sn = ‖Mn+1−Mn‖
Vn

and the path Pn is the segment [Mn,Mn+1].
The default initialization rule starts the model at the
beginning of a pause, at a location uniformly chosen
in A .

The trip selection rule makes its choices only based
on the current phase and location, thus H1 holds. The
conditions (i) in H2a are indeed true; the condition (ii)
is true for the selected phase transitions pause → move.
Hence, H2a is verified. Further, the Markov chain In

alternates between the two states {pause,move}, thus
hypothesis H3 is satisfied.

A
1

A
2

A
3

A
4

M
n
 

M
n+1

 

Fig. 3. Restricted random waypoint on a plane with four squares
as subdomains. This model was introduced in [3] to simulate a
wide-area routing protocol. It was used as an idealized view of
four towns represented by squares. A mobile moves according to
random waypoint within a square for a random number of visits and
then picks a point uniformly at random in another randomly chosen
square as a destination. The figure shows a sample path of the mobile
movement. The speed on the trip is chosen according to a distribution
that depends on the origin and destination squares.

This model is well known; its stationary properties
are studied in [14], [8], [10]. However, even for this
simple model our framework provides two new results:
the proof of existence of a stationary regime, and a
sampling algorithm for the stationary distribution over
general areas that does not require the computation of
geometric integrals.

B. Random Waypoint on General Connected Domain.

This is a variant of the classical random waypoint
(Example III-A), where we relax the assumption that
A is convex, but assume that A is a connected domain
over which a uniform distribution is well defined. For
two points m,n in A , we call d(m,n) the distance from
m to n in A , i.e. the minimum length of a path entirely
inside A that connects m and n. P is the set of shortest
paths between endpoints. The trip selection rule picks a
new endpoint uniformly in A , and the next path is the
shortest path to this endpoint. If there are several shortest
paths, one of them is randomly chosen according to some
probability distribution on the set of shortest paths. The
set of phases is I = {pause,move}. This model fits in our
framework for the same reasons as the former example.

1) Swiss Flag: The model is random waypoint on par-
ticular non-convex domain defined by the cross section
as in Figure 2.

2) City Section: This is a special case of random
waypoint on a non convex domain. The domain is the
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Fig. 4. Fish in a Bowl, a particular restricted random waypoint. A is
the volume of the sphere comprised between two horizontal planes.
Waypoints are in the subset A1 equal to the boundary of the spheric
part of A . For perfect sampling we do not need to know average
Euclidean distance between two random points on the surface of the
bowl. It suffices to know that the distance is at most 2R.

union of the segments defined by the edges of the space
graph (e.g. Figure 1). Arbitrary numeric speeds can be
assigned to edges of the graph. The “distance" from one
location to another is the travel time.

C. Restricted Random Waypoint.

This model was originally introduced by Blažević et
al [3]; see Figure 3 for a description. We define it slightly
more generally as follows. As before, the domain A is
connected, but not necessarily convex.

There are L subdomains A� ⊂ A , � = 1,2, . . . ,L. (In
the original model [3], A� is a square, � = 1,2,3,4, the
subdomains are disjoint and A is the convex closure
of

⋃
� A�). The mobile executes a number of trips with

endpoints in the same subdomain, then picks a new
endpoint in some other subdomain �′ and goes there
along a shortest path. �′ is chosen according to the
transition matrix Q(�,�′), assumed to be irreducible and
such that Q(�,�) = 0. There is a pause between trips.

More precisely, a phase is a quadruple In = (�,�′,r,φ)
with �,�′ ∈ {1, ...,L} (origin and destination subdo-
mains), r ∈ N (residual number of trips in the same
subdomain, including this one) and φ ∈ {pause,move}.
If � 	= �′ then r = 0 else r ≥ 1. The trip selection rule is
executed at the end of a trip as follows. If φ = move
then φ is set to pause, a pause is executed at the
current location, for a duration drawn from a distribution
that depends on the current subdomain, and �,�′,r are
unchanged. Else φ is set to move, and �,�′,r are updated
as follows. If r ≥ 1, r is decremented by 1. If r ≥ 2, �
and �′ are unchanged (they must be equal). If r = 1 (the
previous trip was the last with endpoints in the current
subdomain), �′ is set to a new destination subdomain
chosen according to the transition matrix Q(�,�′). If r = 0

Fig. 5. Random waypoint on a sphere.

(the previous trip was between subdomains) � is set to
the value of �′ and a new value of r is drawn from
a probability distribution that depends on �′. Then a
new endpoint is selected uniformly in A�′ and the next
trip is a shortest path from the current endpoint to this
endpoint. For every trip, the numerical speed is selected
according to a density that may depend on the origin and
destination subdomains of the trip endpoints.

In addition to the model in Figure 3, we give two
particular examples of the restricted random waypoint
model.

1) Fish in a Bowl: The model is restricted random
waypoint on the domain defined by the volume of the
bowl, as in Figure 4. The waypoints are restricted to the
subset A1 of the domain A , where A1 is the set of the
points on the bowl’s surface (see Figure 4). The set of
phases is I = {pause,move}.

2) Space Graph: We defined this model in Section I.
It is a special case of restricted random waypoint with
A = the space graph and A1 = the set of vertices. Note
that it differs from the City Section graph in that the
waypoints are restricted to be vertices. The set of phases
is I = {pause,move}.

Note that all models III-A to III-C.2 and III-D are
special cases of the restricted random waypoint, with
L = 1, r = 0, and A1 = A for examples III-A to III-
B.2, A a strict subset of A for examples III-C.1 and
III-C.2. Note that the subdomains A� may be convex as
in Figure 3 or not as in Figure 4.

D. Random Waypoint on Sphere.

Here A is the unit sphere of R
3. P is the set of

shortest paths plus pauses. The shortest path between two
points is the shortest of the arcs on the great circle that
contains the two points. If the two points are on the same
great circle diameter, the two arcs have same length (this
occurs with probability 0). The trip transition rule picks

0-7803-8968-9/05/$20.00 (c)2005 IEEE
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Fig. 6. Definition of Random Walk (Random Direction) with wrapping (left) or billiard-like reflection (right) at the edge of the domain.

a path endpoint uniformly on the sphere, and the path is
the shortest path to it (if there are two, one is chosen with
probability 0.5). The set of phases is I = {pause,move}.
The numerical speed is chosen independently. Initially,
a point is chosen uniformly.

This model is in fact a special case of the random
waypoint on a connected, non convex domain. However,
we mention it separately as it enjoys special properties
(the stationary location is uniform, unlike for the random
waypoint models described earlier).

E. Random Walk with Wrapping.

This model is viewed as a random waypoint on a torus
in [12]. It has similarity with the Random Direction in
[6]. It is used primarily because of its simplicity: unlike
for the random waypoint, the distribution of location and
speed at a random instant are the same as at a transition
instant, as we show later.

The domain A is the rectangle [0,a1]× [0,a2]. Paths
are wrapped segments, defined as follows. The trip se-
lection rule chooses a speed vector �Vn and a trip duration
Sn independently, according to some fixed distributions.
Choosing a speed vector �Vn is the same as choosing
a direction of movement and a numerical speed. The
mobile moves from the endpoint Mn in the direction and
at the rate given by the speed vector. When it hits the
boundary of A , say for example at a location (x0,a2),
it is wrapped to the other side, to location (x0,0), from
where it continues the trip (Figure 6). Let w : R

2 → A
be the wrapping function:(

x
y

)
�→ w

(
x
y

)
=

(
x mod a1

y mod a2

)
.

The path Pn (if not a pause) is defined by (Mn, �Vn,Sn),
such that Pn(u) = w

(
Mn +uSn�Vn

)
. Note that wrapping

does not modify the speed vector (Figure 6). After a
trip, a pause time is drawn independent of all past from
some fixed distribution. Initially, the first endpoint is
chosen uniformly in A . As we show next, this implies
that all endpoints are in turn uniformly distributed (when
sampled at transition instants).

This model obviously satisfies assumptions H1 and
H3 with set of phases I = {pause,move}. We now show
that it satisfies H2.

Lemma 1: Let X be a random point, uniformly dis-
tributed in A = [0,a1]× [0,a2]× ...[0,ad]. For any non
random vector �v ∈ R

d, the distribution of w(X +�v) is
also uniform in A .

Theorem 1: The distribution of points M1,M2, ..., is
uniform in A .

Proof. M0 is uniform by assumption. By Lemma 1,
the distribution of M1 is also uniform, and recursively,
so is the distribution of Mn. �

This shows H2b. Note that this is true regardless of the
distribution with which �Vn and Sn are chosen.

F. Random Walk with Reflection.

This is similar to example III-E, but with billiard-like
reflections instead of wrapping (Figure 6). It enjoys some
of the same final simplicity, but the intermediate steps
are more elaborate. The definition is identical to example
III-E, with the three following differences:

1) The wrapping function is replaced by the billiard
reflection function b : R

2 → A , defined by

(
x
y

)
�→ b

(
x
y

)
=


 a1 b1

(
x
a1

)
a2 b1

(
y
a2

)

 ,

where b1 : R → [0,1] is the 2-periodic function:

b1(x) = |x|, for −1 ≤ x ≤ 1.
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2) Unlike the wrapping function, the billiard reflection
may alter the speed vector (Figure 6). Therefore we
differentiate the unreflected speed vector �Wn from the
instantaneous speed vector �V (t) at time t. The path Pn

(if not a pause) is defined by (Mn, �Wn,Sn), such that

Pn(u) = b
(

Mn +uSn �Wn

)
.

3) We assume that the distribution of the unreflected
speed vector �Wn chosen by the trip selection rule has
a density and is completely symmetric. We say that
a random vector (X ,Y ) has a completely symmetric
distribution iff (−X ,Y ) and (X ,−Y ) have the same
distribution as (X ,Y ). This is true for example if the
direction of �W is uniformly chosen on the unit circle, or
if the two coordinates of �W are independent and have
even distributions.

This model obviously satisfies assumptions H1 and H3
with set of phases I = {pause,move}. It also satisfies H2:

Lemma 2: Let X be a random point, uniformly dis-
tributed in A = [0,a1] × [0,a2] × ...[0,ad]. Let �V be
a random vector in R

d with a completely symmetric
density. The distribution of the reflection b(X +�V ) is
also uniform in A .

Proof. Follows from Lemma 5 in Section VII. �

Theorem 2: The distribution of points M1,M2, ..., is
uniform in A .

Proof. Similar to Theorem 1, using Lemma 2. �

IV. EXISTENCE AND UNIQUENESS OF STATIONARY

DISTRIBUTION

Theorem 3: With the model defined in Section II, there
is a time-stationary regime if and only if the expected
trip duration IE0(S0) is finite. If it exists, the stationary
regime is unique.

Proof of the theorem in Appendix [4] is outlined
as follows. First, under assumptions H1-H3, it follows
that there exists a unique stationary distribution for the
mobility state embedded at trip transition instants (aka
event-stationary distribution). Second, we show that the
so called Slivnyak’s conditions hold [1], which guarantee
existence of a time-stationary distribution. Lastly, when-
ever a time-stationary distribution exists, its uniqueness
follows from the Palm inversion formula [1].

Corollary 1: For examples III-A to III-D, there is a
stationary regime if and only if the pause time and
inverse speed (sampled at a transition) have a finite
expectation. For examples III-E and III-F the condition
is that the pause time and trip duration (sampled at a
transition) have a finite expectation.
Comment. These conditions are known to be necessary
for the classical random waypoint to be “harmless".

However, it appears to be the first time that the link to
the existence of a stationary regime is made rigorously.

V. TIME STATIONARY DISTRIBUTIONS

For a perfect simulation, all we need is to sample from
the time stationary distribution of the process state. The
state of the process is the phase (I(t), the path P(t), the
trip duration S(t) and fraction of time elapsed on the trip
U(t). In this section we derive the fundamental relation
between the parameters of the random trip model and its
stationary distribution. In the next section we apply it to
the various examples introduced earlier.

Theorem 4: Assume the condition for existence and
uniqueness of a stationary distribution in Section IV is
satisfied. The time stationary distribution of the process
state at an arbitrary time t is defined as follows.

1) Phase:

IP(I(t) = i) =
π0(i)τ̄i

∑ j π0( j)τ̄ j

where τ̄i = IE0(S0|I0 = i) is the mean trip duration
for phase i.

2) Path and trip duration, given the phase:

dIP(P(t) = p,S(t) = s|I(t) = i)

=
s
τ̄i

dIP0(P0 = p,S0 = s|I0 = i).

3) Fraction of time elapsed on the trip:
U(t) is independent of (I(t),P(t),S(t)) and is
uniform on [0,1].

Note that the factor 1/∑i π0(i)τ̄i in item 1 is precisely
the intensity of the point process of trip transitions [1].
Special Case. In many examples (III-A to III-C.2 and
III-D) the set of phases is reduced to {pause,move} and
the model alternates between these two. Then π0(i) = 0.5
for i = pause or move and item 1 simplifies to P(I(t) =
pause) = τ̄pause

τ̄pause+τ̄move
and P(I(t) = move) = τ̄move

τ̄pause+τ̄move
.

VI. APPLICATION TO EXAMPLES III-A TO III-C

In all of this section, we assume that the condition
for stationarity in Section IV is satisfied. We focus on
restricted random waypoint on general connected area,
since examples III-A to III-C are special cases of it.

A. Time Stationary Distributions

A direct application of the Theorem 4 gives the
time stationary distribution of the process. Due to its
description complexity, we give it in three pieces, in the
following theorems. Special notation local to this section
is given below.
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Notation Used in Section VI
• Q(�,�′): probability that next subdomain is A�′ given
current subdomain is A�, with Q(�,�) = 0. q∗(�) is the unique
stationary probability of Q (q∗Q = q∗).
• For r ∈ N, F�(r) is the probability that the number of
consecutive sojourns in subdomain A� is ≥ r. R̄� = ∑r F�(r)
is the average number of consecutive sojourns in subdomain
A�.
• ∆̄�,�′ is the average distance in A for two points chosen
uniformly in A� and A�′ . ∆�,�′ is some upper bound on the
distance in A between two points in A� and A�′ .
• f 0

V |i(v) is the Palm (= at a transition instant) distribution
of speed, given that phase is i = (�,�′,r,move); ω�,�′ =
IE0

(
1

V0
|In = (�,�′,r,move)

)
is the event average of the in-

verse of the speed chosen for a trip from subdomain A� to
A�′ . We have ω�,�′ =

∫ ∞
0

1
v fV |�,�′,r,move(v)dv, assumed to be

independent of r.
• f 0

S|i(s) is the Palm (= at a transition instant) distribution
of pause time, given that phase is i = (�,�′,r,pause); τ�,�′ =
IE0 (S0|I0 = (�,�′,r,pause)) is the average pause time that
follows a trip from subdomain A� to A�′ . We have τ�,�′ =∫ ∞

0 s fS|�,�′,r,pause(s)ds, assumed to be independent of r.

The first theorem generalizes known statements for the
classical random waypoint (Example III-A) [15], [14].
It relates the time average speed to the distribution
of the speed selected at a waypoint, and contains an
exact representation of the time stationary distribution
of location.

Theorem 5: Under the time stationary distribution,
conditional to phase I(t) = i = (�,�′,r,move):

1) The numerical speed is independent of the path
and the instantaneous location of the mobile at
time t. Its density is

fi(v) =
Ci

v
f 0
V |i(v)

where f 0
V |i(v) is the density of the numerical speed

sampled at a transition instant and Ci is a normal-
izing constant.

2) The path endpoints (P(t)(0),P(t)(1)) have a joint
density over A� ×A�′ given by

dIP(P(t)(0) = m0,P(t)(1) = m1|I(t) = i)
= K�,�′d(m0,m1)

where K�,�′ are normalizing constants and d() is
the distance in A .

3) The distribution of X(t), given P(t)(0) = p and
P(t)(1) = n, is uniform on the segment [p,n].

Proof. Apply Theorem 4 to obtain the joint distribu-
tion of the path, location and speed V (t), by noting that
V (t) = d(P(t)(0),P(t)(1))/S(t). �

Comment 1. As we show later, there is no need to
know the value of the constants K�,�′ to use the theorem
in a simulation. 1

Comment 2. The distribution of path endpoints
P(t)(0) and P(t)(1) is not uniform, and the two end-
points are correlated (they tend to be far apart), contrary
to what happens when sampled at transition instants.
This was found already for Example III-A in [13].

Comment 3. The relation between time stationary
and event stationary distribution of speed is sometimes
interpreted as “speed decay" since it is more likely to
produce low speed values than the density f 0

i (v). If one
desires a uniform speed distribution in time average,
then the density of speed at transition instants should
be f 0

i (v) = K′
i v1{vmin<v<vmax}. Note that such a speed

distribution satisfies the stability condition in Section IV
even if vmin = 0.

Theorem 6: Under the time stationary distribution,
conditional to phase I(t) = i = (�,�′,r,pause):

1) the location X(t) and the time R(t) until end of
pause are independent

2) X(t) is uniform in A�′

3) R(t) has density

fi(r) =
1
τ̄i

∫ ∞

r
f 0
S|i(s)ds

where f 0
S|i(s) is the density of the pause time

selected at a transition.
Proof. Similar to (but simpler than) Theorem 5. �

We next show time-stationary distribution for phase,
but only for the special case L = 1, i.e. one sub-
domain. The general case for arbitrary L bears some
notational complexity and is for this reason deferred to
Appendix [4].

Theorem 7: The time stationary distribution of phase
π is given by is

π(pause) =
τpause

τpause + ∆̄ω
and π(move) = 1−π(pause), where τpause is the average
pause time, ∆̄ the average distance in A between two
points in A1, and

ω = IE0

(
1

V0
|I0 = move

)
.

1However, in the special case of convex domains where d(m,n) is
the usual Euclidean distance, it is worth noting that there are known
formulae: K−1

�,�′ = vol(A�)vol(A ′
�)∆̄�,�′ where vol(A�) is the area or

volume of A� (in square or cubic meters) and ∆̄�,�′ is the average
distance in A between two points drawn uniformly in A� and A�′ .
For � = �′ and A� = a square of a size a, K−1

�,� ≈ 0.5214a5; for a

disk of radius a, K−1
�,� ≈ 0.9054π2a5 [8]. For an arbitrary case, it is

generally not possible to obtain either vol(A�) or ∆̄�,�′ in closed form,
but K−1

�,�′ can be obtained directly by Monte Carlo simulation.
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is the event average of the inverse of the speed.
As with Theorem 5, we show later that we do not

need to know ∆̄ to use this theorem for sampling. The
special case of one sub-domain accomodates examples
III-A, III-B.1, III-B.2, III-C.1, III-C.2, and III-D.

B. Perfect Simulation Without Computing Geometric In-
tegrals

A straightforward application of the previous section
poses the problem of how to sample (m0,m1) from the
density in Theorem 5. Further, in order to sample the
phase in Theorem 7 one needs to compute the geometric
integrals ∆̄�,�′ ; for simple cases (L = 1 and A1 is a
rectangle or disk) there exist closed forms, as mentioned
in Comment 1 after Theorem 5. Otherwise, one needs
to compute them offline by Monte Carlo simulation.
For cases like Figure 3, this is time consuming (see an
analysis in Appendix [4]). There is generally more effi-
cient procedure, which avoids computing the geometric
integrals when they are not known. The solution of these
two problems is based on the following lemma.

1) Rejection Sampling Lemma: Let (J,Y ) be a ran-
dom vector, where J is in a discrete set J and Y ∈ R

d .
Assume that IP(J = j) = λµ( j)ϖ j and the distribution of
Y conditional to J = j has a density f j(y)

ϖ j
The problem

is to sample from (J,Y ) without having to compute the
normalizing constants of the densities ϖ j for all j.

Assume we know factorizations of the form f j(y) =
k j(y)g j(y) where g j(y) is a probability density2 Assume
also that we know upper bounds κ j such that 0≤ k j(y)≤
κ j.

Lemma 3: Let ν be the probability on J defined by: if
ϖ j is known ν( j) = αµ( j)ϖ j else ν( j) = αµ( j)κ j, where
α is a normalizing constant, defined by the condition
∑ j ν( j) = 1. The following algorithm draws a sample
from (J,Y ):

do forever
draw j with probability ν( j)
if ϖ j is known

draw y from the density f j(y)/ϖ j;leave
else

draw y from the density g j(y)
draw U ∼ Unif(0,κ j)
if U ≤ k j(y)

κ j
leave

end do
Comment. The lemma follows by the structure of

the distribution of J and conditional density of Y . The
structure is: IP(J = j) is proportional to ω j, while the

2That is,
∫

g j(y)dy = 1, or in other words there is no normalizing
constant to compute for g j(y).

conditional density of Y , given J = j, is inversely pro-
portional to ω j. By this structure, twisting the original
distribution of J and conditional density of Y , by replac-
ing ω j with κ j, indeed results in the original joint density
of (J,Y ). The lemma is a general result. However, it may
be helpful to note that the general form was suggested
by particular distributions in Theorem 4. Therein, phase
I(t) acts the role of J, while (P(t),S(t),U(t)) acts the
role of Y .

2) The Sampling Method: The following theorem
gives the sampling method. The details for the general
case have some description complexity, and is for this
reason deferred to Appendix [4]. We show all details
here for the case L = 1.

Theorem 8: (Perfect Simulation of Restricted Random
Waypoint) The following algorithm draws a sample of the
time stationary state of the restricted random waypoint:

1) Sample a phase I(t) = i = (�,�′,r,φ) from the algo-
rithm in Figure 7 (simple case) or in Appendix [4]
(general case).

2) If φ = pause

• Sample a time t from the distribution with
density fi(t) = 1/τ̄i

∫ ∞
t f 0

S|i(s)ds.
• Sample a point M uniformly in A�′ .
• Start the simulation in pause phase at location

M and schedule the end of pause at t.

3) If φ = move

• Sample a speed v from the distribution with
density proportional to 1

v f 0
V |i(v).

• Set M0,M1 to the value returned by the al-
gorithm in Figure 7 (simple case) or in Ap-
pendix [4] (general case).

• Sample u uniformly in (0,1).
• Start the simulation in move phase, with initial

position (1− u)M0 + uM1, next trip endpoint
= M1, and speed = v.

Note that the algorithm in Figure 7 solves both prob-
lems mentioned in the introduction of this section. If ∆̄
is known with little computational cost (i.e. when A is
a rectangle or a disk) it is always preferable to use the
former case (“∆̄ is known"). Else there are two options:
(1) compute ∆̄ offline by Monte-Carlo simulation and
use the case "∆̄ is known", or (2) use the case (“∆̄
is not known"). Apart from unusually long simulation
campaigns with the same model, the optimal choice,
in terms of number of operations is to use the latter
case (see Appendix [4]). Furthermore, using the latter
case simplifies the overall simulation code development.
Figure 8 illustrate the sampling method on Examples III-
B to III-C.
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Fig. 8. Perfect sampling of node position from time-stationary distribution for swiss flag (1000 samples), fish in a bowl (5000 samples),
four-town-restricted random waypoint (5000 samples) and space graph (10000 samples). Densities are not uniform, with bias towards central
areas and interior corner points.

VII. APPLICATION TO EXAMPLES III-D TO III-F

In all of this section, we assume that the condition for
stationarity in Section IV is satisfied.

A. Random Waypoint on Sphere (Example III-D)

This model is a special case of restricted random
waypoint over a non convex area, with L = 1 and A1 = A .
Thus all findings of Section VI apply, in particular, the
time stationary speed is independent of location and is
given by Theorem 5.

Theorem 9: For the random waypoint on a sphere,
the time stationary distribution of the mobile location is
uniform.

Proof. Apply Theorem 5. The distribution of X(t) is
invariant under any rotation of the sphere around an
axis that contains the center of the sphere, and any
distribution that has such an invariance property must
be uniform. �

Note that, with the same argument, we can show that,
given we are in a move phase, the time stationary

distribution of each path endpoint (previous and next)
separately is also uniform, but the two endpoints are
correlated (it is more likely that they are far apart).
This is because, from Theorem 5, a typical path seen in
time average is drawn with a probability proportional to
path length. This implies that, though the time stationary
distribution of points is uniform, it is not sufficient for
perfect simulation to draw an initial position uniformly
on the sphere and start as if it would be a path endpoint
(we need in addition to sample a path and where on path
according to Theorem 5).

B. Random Walk with Wrapping (Example III-E)

Let f 0
pause(t) [resp. f 0

move(t)] be the density of the pause
[resp. move] duration, sampled at a transition time. Both
densities are model parameters. Also let τ̄pause, τ̄move be
the corresponding averages (thus for example τ̄pause =
IE0(S0|I0 = pause) =

∫ ∞
0 t f 0

pause(t)dt). Finally, let f 0
�V
(�v)

be the density of the distribution of the speed vector
(sampled at trip endpoints).
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If ∆̄ is known

q0 = τpause/(τpause +ω∆̄)
Draw U1 ∼U(0,1)
if U1 ≤ q0 I(t) = pause
else

I(t) = move
do

Draw M0 ∼ Unif(A1),M1 ∼ Unif(A1)
Draw U2 ∼ Unif(0,∆)

until U2 < d(M0,M1)

else (i.e. ∆̄ is not known)

q0 = τpause/(τpause +ω∆)
do forever

Draw U1 ∼U(0,1)
if U1 ≤ q0 I(t) = pause; leave
else

Draw M0 ∼ Unif(A1),M1 ∼ Unif(A1)
Draw U2 ∼ Unif(0,∆)
if U2 < d(M0,M1)
I(t) = move; leave

end do

Fig. 7. Sampling algorithm for restricted random waypoint with L =
1, supporting both cases where the average distance between points
in A1 is known or not. τpause is the average pause time, ∆̄ the average
distance in A between two points in A1, ∆ an upper bound on the
distance in A between two points in A1 and ω = IE0(1/V0|I0 = move)

Theorem 10: For random walk with wrapping, under
the time stationary distribution:

1) the process state at time t is fully described by the
phase I(t), the location X(t), the speed vector �V (t)
(=�0 if phase=pause) and the residual time until
end of trip R(t)

2) the location X(t) is uniform
3) P(I(t) = pause) = τ̄pause

τ̄pause+τ̄move
and P(I(t) = move) =

τ̄move
τ̄pause+τ̄move

4) conditional to phase=pause:

• the residual pause duration R(t) has density
fpause(r) = 1/τ̄pause

∫ ∞
r f 0

pause(s)ds
• X(t) and R(t) are independent

5) conditional to phase=move:

• �V (t) has density f 0
�V
(�v)

• the residual trip duration R(t) has density
fmove(r) = 1/τ̄move

∫ ∞
r f 0

move(s)ds
• X(t),�V (t) and R(t) are independent

Thus, contrary to random waypoint on sphere, perfect
simulation of this model is very simple. Pick a phase
in proportion to the average time spent in the phase.
Pick a point and, for move phase, a speed vector as if
at a transition point, and pick a remaining trip duration
according to the general formula for the density of the
time until next transition, in any stationary system. Also,
there is no speed decay [16] as with random waypoint
on a sphere.

C. Random Walk with Reflection (Example III-F)

There is a similar result for random walk with billiard
reflection, but its proof if more elaborate. We use con-
tinue with the same notation, with the difference that the
instantaneous speed �V (t) may differ from the unreflected
speed �Wn chosen at the beginning of the trip. Let f 0

�W
(�w)

be the density of the distribution of the non reflected
speed vector (sampled at trip endpoints).

The following lemma expresses that, in order to con-
tinue a path from an intermediate point m it is not needed
to know the unreflected speed vector, the instantaneous
speed is enough (proof in Appendix [4]):

Lemma 4: For any non random point m ∈ A and
vector �v ∈ R

2: b(m+�v) = b(b(m)+∇bm+�v�v).
The following lemma says that, at the end of trip that

starts from a uniform point M and a completely sym-
metric initial speed vector �W , the reflected destination
point M′ and speed vector �W ′ are independent and have
same distribution as initially (proof in Appendix [4]).

Lemma 5: Let M be a random point, uniform in A .
Let �W be a random vector in R

2 independent of M and
with completely symmetric distribution under reflections.
Let M′ = b

(
M + �W

)
and �W ′ = ∇bM+�W

�W. M′ and �W ′ are

independent and have the same distribution as M and �W.
Theorem 11: For the random walk with reflection, the

same holds as in Theorem 10 after replacing f 0
�V
(�v) by

f 0
�W
(�v) in the first bullet of item 5.
Proof. Item 1 follows from Lemma 4. The rest follows

from Theorem 4 and Lemma 5, in a similar way as for
Theorem 10. �

Remark. The location X(t) and the path
M(t), �W (t),S(t) are not independent. For example, given
that the unreflected speed vector is �W (t) = (0.5a1,0) and
the trip duration is S(t) = 1, it is more likely that X(t)
is in the second right half of the rectangle. However,
independence is true if, instead of the path descriptor,
we take as simulation state the current position, speed
and time to next endpoint, as justified by the theorem.
Perfect simulation of this random walk is similar to the
random walk with wrapping.

VIII. RELATED WORK

For a survey of existing mobility models, see the work
by Camp, Boleng, and Davies [6] and the references
therein. Bettstetter, Hartenstein, and Pérez-Costa [8]
studied the time-stationary distribution of a node position
for classical random-waypoint model. They observed
that the time-stationary node position is non-uniform and
it has more mass in the center of a rectangle. A similar
problem has been further studied by Bettstetter, Resta,
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and Santi [2]. A closed-form expression for the time-
stationary density of a node position is obtained only
for random-waypoint on a one-dimensional interval; for
two dimensions only approximations are obtained. Note
that in Theorem 5 we do have an exact representation
of the distribution of mobile location as a marginal of
a distribution with a known density. Neither [8] nor
[2] consider how to run perfect simulations. It is the
original finding of Yoon, Liu, and Noble [15] that the
default setting of the classical random-waypoint is in fact
ill-defined. The default random-waypoint assumes the
event-stationary distribution of the speed to be uniform
on an interval (0,vmax]. The authors found that if a node
is initialized such that origin is a waypoint, the expected
speed decreases with time to 0. This in fact corresponds
to an infinite event-average time between two waypoints,
which as we show in Section IV, corresponds to the
absence of stationary regime. In a subsequent work [16],
the same authors advocate to run sound mobility models
by initializing a simulation by drawing a sample of the
speed according to its time-stationary distribution. We
remark that speed is only a partial state of a node; in
this paper, we look at the complete state of the node
mobility. For the last reason, the authors in [16] do not
completely solve the problem of running perfect simu-
lations. Another related work is that of Lin, Noubir, and
Rajaraman [12] that studies a class of mobility models
where travel distance and travel speed between transition
points can be modeled as a renewal process. The renewal
assumption was also made in [15], [16]. We note that this
assumption is not verified with mobility models such as
classical random-waypoint on any non-isotropic domain,
such as rectangle, for example. The renewal assumption
has been made largely to make use of a “cycle” formula
from renewal theory. An elementary knowledge of Palm
calculus tells us that “cycle” formula is in fact Palm
inversion formula, which we used extensively throughout
the paper, and that applies more generally; this renders
the renewal assumption unnecessary. Perhaps the work
closest to ours is that of Navidi, Camp, and Bauer in
[14], [13]. As discussed in Section I-C, we provide a
systematic framework that allows to formally prove some
of the implicit statements in [13] and generalize to a
broader class. Further, our perfect sampling algorithm
differs in that it works even when geometric constants
are not a priori known.

IX. CONCLUSION

Our perfect sampling algorithm is implemented to use
with ns-2 to produce perfect simulations for a broad
set of random trip mobility models. The code is freely
available to download from:

http://ica1www.epfl.ch/RandomTrip

This web page contains also further pointers to random
trip mobility models.
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